摘要
通过对陇南农产品电商销售大数据的挖掘分析,用回归分析找到商品收藏量与销售量的相关程度,利用K-Means聚类算法对商品的特征进行聚类分析。以特征分析为基础,从时令商品预售、价格层次、智能推送、直播带货和物流配送五个方面为陇南农产品电商销售制定出更为高效的营销策略。
Through mining and analysis of the big data of Longnan agricultural products E-commerce sales,regression analysis is used to find the relationship between the quantity of commodity collection and the sales volume,and K-Means clustering algorithm is used to cluster the characteristics of commodities.On the basis of characteristic analysis,a more efficient marketing strategy was developed for Longnan agricultural products E-commerce sales from five aspects:pre-sale of seasonal commodities,price level,intelligent push,live streaming with goods and logistics distribution.
作者
胡新海
叶建龙
盛君贤
Hu Xinhai;Ye Jianlong;Sheng Junxian(Longnan Teachers College,Longnan 742500,China;Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《廊坊师范学院学报(自然科学版)》
2023年第4期50-52,79,共4页
Journal of Langfang Normal University(Natural Science Edition)
基金
陇南市2019年市列科技指导性计划项目“大数据环境下陇南农产品电商销售行为与精确营销研究”(2019-ZD-16)。