期刊文献+

基于SPECT全身骨扫描的YOLOv5x深度学习网络模型诊断良、恶性骨病灶 被引量:1

YOLOv5x deep learning network model based on SPECT whole body bone scanning for diagnosing benign and malignant bone lesions
下载PDF
导出
摘要 目的基于SPECT全身骨扫描构建YOLOv5x深度学习网络模型,观察其诊断良、恶性骨病灶的价值。方法纳入699例接受SPECT骨扫描患者共5182处骨病变,包括恶性3105处、良性2077处。按8∶1∶1将1121幅骨扫描图像分为训练集(n=897)、验证集(n=112)及测试集(n=112)。对训练集及验证集数据进行增强后输入YOLOv5x深度学习网络进行训练得到模型,基于测试集评估模型识别良、恶性骨灶的敏感度、特异度和准确率,及其诊断结果与金标准的一致性。结果骨扫描YOLOv5x深度学习网络模型识别恶性骨病变的敏感度为95.75%、特异度为87.87%、准确率为91.60%,识别良性骨病灶分别为91.62%、94.38%及93.14%。模型识别骨扫描图像中骨病灶的曲线下面积(AUC)为0.98,识别恶性、良性骨病灶的AUC分别为0.97、0.98。模型诊断恶性及良性骨病灶的结果与金标准的一致性均好(Kappa=0.83、0.86,P均<0.05)。结论基于SPECT全身骨扫描建立的YOLOv5x深度学习网络模型有助于诊断良、恶性骨病灶。 Objective To construct YOLOv5x deep learning network model based on SPECT whole body bone scanning,and to observe its value for diagnosing benign and malignant bone lesions.Methods Totally 699 patient who underwent SPECT bone scanning were enrolled,with a total of 5182 bone lesions,including 3105 malignant and 2077 benign lesions.Then 1121 bone images were divided into training set(n=897),validation set(n=112)or test set(n=112)at the ratio of 8∶1∶1.After augmentation on training set and validation set,the data were inputted to YOLOv5x deep learning network for training to obtain a recognition model.The sensitivity,specificity and accuracy of this model for diagnosing benign and malignant bone lesions were analyzed,and the consistency between its diagnosis results and gold standards was evaluated based on test set.Results The sensitivity,specificity and accuracy of bone scanning YOLOv5x deep learning network model for identifying malignant bone lesions was 95.75%,87.87%and 91.60%,respectively,and for identifying benign bone lesions was 91.62%,94.38%and 93.14%,respectively.The area under the curve(AUC)of this model for identifying bone lesions on bone scanning images was 0.98,for malignant and benign bone lesions was 0.97 and 0.98,respectively.The consistency between the diagnosis results of this model for malignant and benign bone lesions and the gold standards were both good(Kappa=0.83,0.86,both P<0.05).Conclusion YOLOv5x deep learning network model based on SPECT whole body bone scanning was helpful for diagnosing benign and malignant bone lesions.
作者 李宗霖 赵峥 连世东 LI Zonglin;ZHAO Zheng;LIAN Shidong(Department of Nuclear Medicine,The Second Affiliated Hospital of Guangxi Medical University,Nanning 530000,China)
出处 《中国医学影像技术》 CSCD 北大核心 2023年第12期1867-1871,共5页 Chinese Journal of Medical Imaging Technology
关键词 骨和骨组织 深度学习 正电子发射断层显像 boneand bones deep learning positron-emission tomography
  • 相关文献

参考文献5

二级参考文献16

共引文献113

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部