期刊文献+

基于双目相机深度图的道路边缘测距方法

Rang-measuring method of road edge based on binocular camera and depth map
下载PDF
导出
摘要 为了实现道路划线喷头的自动定位,提出一种基于双目相机深度图的道路边缘测距方法。首先采用张氏标定法进行双目相机参数标定,获得相机的内部参数和外部参数,并对标定纸和标定板的标定结果进行比较;然后采用BM算法计算左右图像匹配点对之间的视差值得到深度图,通过二值化、腐蚀、膨胀和寻找最大色块的方法检测深度图中的道路边缘中心点;最后通过坐标转换得到双目相机与道路边缘的距离。实验证明,该方法能有效检测双目相机与道路边缘之间的横向距离。 In order to realize the automatic positioning of the road-marking machine,a road edge ranging method based on binocular camera and depth map is proposed.Firstly,Zhang’s calibration method is adopted to obtain the internal and external parameters of the camera,and the calibration results of the calibration paper and the calibration board are compared.Then BM algorithm is used to calculate the disparity value between the corresponding matching points in the left and right image pairs to obtain the depth map.Furtherly the center point of the road edge is detected by binarization and fixing the maximum color block.Finally,the distance between the binocular camera and the road edge is obtained by the coordinate conversion.It is proved that the proposed method can effectively detect the lateral distance between the binocular camera and the road edge.
作者 朱春媚 张文康 Zhu Chunmei;Zhang Wenkang(Department of Mechanical and Electrical Engineering,Zhongshan Institute of University of Electronic Science and Technology,Zhongshan 528403,China)
出处 《现代计算机》 2023年第20期69-72,共4页 Modern Computer
基金 中山市社会公益项目(2021B2031)。
关键词 双目相机 道路边缘 测距 binocular camera road edge range-measuring
  • 相关文献

参考文献3

二级参考文献27

  • 1王翥,佟晓筠.一种新型彩色图像读取传感器芯片[J].仪表技术与传感器,2004(7):31-33. 被引量:2
  • 2OV7670 Product Specifications. Version 1.3 [ EB/OL]. [ 2006 - 05 - 05 ]. http://www, ovt. com.
  • 3Mart D C. A Computational Investigation into the Human Representation and Processing of Visual Information [ M ]. San Francisco: W. H. Freeman and company, 1982.
  • 4Nalpantidis L, Gasteratos A. Stereo vision for robotic ap- plications in the presence of non-ideal lighting conditions [ J ]. Image and Vision Computing, 2010, 28 ( 6 ) : 940-951.
  • 5Ambrosch K, Kubinger W. Accurate hardware-based ster- eo vision[ J ]. Computer Vision and Image Understanding, 2010,114 : 1303-1316.
  • 6Nuan Shao,Hui Guang Li,Le Liu,et al. Stereo vision robot obstacle detection based on the SIFT [ R]. 2010 Second WRI Global Congress on Intelligent Systems ,2010.
  • 7Sizintsev M, Wildes R P. Coarse-to-fine stereo vision with accurate 3D boundaries [ J ]. Image and Vision Computing,2010,28 : 352 - 366.
  • 8Boykov Y,Veksler O, Zabih R. Fast Approximate energy minimization via graph cut[J]. Pattern Analysis and Ma- chine Intelligence ,2002,23 ( 11 ) : 1222-1239.
  • 9Cai J. Integration of optical flow and dynamic program- ming for stereo matching [ J ]. IET Image Processing, 2012,6(3) :205-212.
  • 10Mohamed E1 Ansari, Mazoul A, Bensrhair A, et al. A Real- time Spatio-Temporal Stereo Matching for Road Applica- tions[ C ]//14th International IEEE Conference on Intelli- gent Transportation Systems. 2011.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部