摘要
利用内嵌物理信息神经网络方法(PINN)求解一类具有分数拉普拉斯算子的空间分数阶扩散方程,获得分数阶偏微分方程的数值解。首先将分数阶导数项采用有限差分离散算子后嵌入PINN进行求解,并借助自动微分技术进行求导;然后建立了训练误差函数,并给出方程初边值问题的相关算法,分析了神经网络的学习速率和数值误差;其次,给出数值例子,验证了用该方法求解空间分数阶扩散方程的有效性。
In this paper,the embedded physical information neural network method(PINN)is used to solve a class of spatial fractional diffusion equations with fractional Laplacian operator,and the numerical solution of the fractional partial differential equation is obtained.Firstly,the fractional derivative term is solved by using the finite difference discrete operator and embedded in PINN.Then the training error function is established,the correlation algorithm of the initial boundary value problem is given,and the learning rate and numerical error of the neural network are analyzed.Finally,a numerical example is given to verify the effectiveness of the proposed method in solving the space fractional diffusion equation.
作者
王肖
王自强
WANG Xiao;WANG Ziqiang(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处
《贵州科学》
2023年第6期55-58,共4页
Guizhou Science
基金
国家自然科学基金(11901135,11961009)
贵州省科学技术基金项目(黔科合基础〔2020〕1Y015)。
关键词
内嵌物理信息神经网络
分数拉普拉斯
有限差分
自动微分
embedded physical information neural network
fractional Laplace
finite difference
automatic differentiation