期刊文献+

二氧化碳电催化剂理论设计方法研究进展

Recent Progress of Theoretical Design Methods for CO_(2) Electrocatalytic Reduction Catalysts
下载PDF
导出
摘要 CO_(2)电催化还原(ECR)是一种极具应用前景的CO_(2)利用技术,其关键在于高性能催化剂的开发。采用理论方法可有效指导与加速高效ECR催化剂的设计。从密度泛函理论(DFT)、溶剂化模型、电化学计算模型和机器学习四个方面介绍了ECR催化剂的理论设计方法。DFT、DFT+U、杂化泛函可有效计算ECR反应体系的能量、电子特性等,预测催化剂的性能;对于ECR反应中的溶剂效应,综合计算成本和精度需考虑显式溶剂化模型、隐式溶剂化模型和混合模型;在ECR电化学计算中,恒定电极电位模型比计算氢电极模型更能有效描述CO_(2)还原的能量变化;机器学习可高效、低成本地实现ECR催化剂的性能预测、活性位点设计和组分优化。最后,对CO_(2)电催化剂的理论设计方法进行了展望。 CO_(2) electrocatalytic reduction(ECR)is a promising technology for CO_(2) utilization.The key problem depends on the development of highly efficient catalysts.The theoretical method can effectively guide and accelerate the design of efficient ECR catalyst.This review introduces the theoretical methods of ECR catalyst design from four aspects:density functional theory(DFT),solvent effect,electrochemical computational model and machine learning.DFT,DFT+U and hybrid functional can effectively calculate the energy and electronic properties of ECR reaction system and predict the performance of catalyst.The selection of explicit solvation model,implicit solvation model and mixed model should be considered to investigate the solvent effect in ECR reaction.In the electrochemical calculation of ECR,the constant electrode potential(CEP)model is more effective than the computational hydrogen electrode(CHE)model in describing the energy change of CO_(2) reduction process.Machine learning enables the performance prediction,active site design and component optimization of ECR catalysts with high efficiency and low cost.Finally,an outlook on the rational design methods of catalysts for CO_(2) electrocatalytic reduction is provided.
作者 王清华 肖一杨 杨应举 刘晶 白红存 WANG Qinghua;XIAO Yiyang;YANG Yingju;LIU Jing;BAI Hongcun(Hefei Power Generation Co.Ltd.,CHN Energy Investment Group,Hefei 230026,China;State Key Laboratory of Coal Combustion,School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering,School of Chemistry and Chemical Engineering,Ningxia University,Yinchuan 750021,China)
出处 《新能源进展》 CSCD 2023年第6期524-533,共10页 Advances in New and Renewable Energy
基金 中央高校基本科研基金项目(2019kfyRCPY021) 湖北省创新群体项目(2023AFA039) 省部共建煤炭高效利用与绿色化工国家重点实验室开放课题项目(2022-K46)。
关键词 CO_(2)电催化还原 密度泛函理论 电化学计算 机器学习 CO_(2)electrocatalytic reduction density functional theory electrochemical calculation machine learning
  • 相关文献

参考文献2

二级参考文献9

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部