期刊文献+

基于多尺度链接的红外与可见光图像融合

Infrared and Visible Image Fusion Based on Multi-scale Link
下载PDF
导出
摘要 提出了一种红外和可见光图像的融合方法。该方法采用深度学习中的生成对抗网络(generative adversarial network,GAN)来融合两种模态图像,融合过程主要通过网络架构中生成器和鉴别器之间的对抗实现。生成器采用多尺度链接架构,有效提取并利用源图像的深层与浅层特征信息。同时鉴别器采用了与传统全局鉴别器不同的局部鉴别器,确保融合后的图像充分包含源图像的信息与特征分布。经实验验证,采用该方法融合后的图像能有效包含两种源图像各自的特征。 A fusion method for infrared and visible image was presented.The method used generative adversarial network(GAN)of deep learning to fuse two modal images.The fusion process was mainly achieved through adversarial interactions between generators and discriminators of the network architecture.The generator employed a multi-scale link architecture to allow effective extraction and utilization of deep and shallow-level features from the source images.Moreover,the local discriminator which was distinct from traditional global discriminator was used to ensure comprehensive incorporation of the information and feature distributions from the source images in the fused output.Experimental results demonstrate the effectiveness of the proposed method in preserving the distinctive characteristics of both source images in the fused output.
作者 刘兆丰 姜家瑞 傅迎华 LIU Zhaofeng;JIANG Jiarui;FU Yinghua(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200082,China)
出处 《制导与引信》 2023年第4期22-28,共7页 Guidance & Fuze
基金 上海航天科技创新基金(SAST2021-005)。
关键词 红外图像 可见光图像 生成对抗网络 图像融合 infrared image visible image GAN image fusion
  • 相关文献

参考文献4

二级参考文献37

  • 1刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 2PIELLA G,. A general fra, mework for multiresolu- tion image fusion: from pixels to regoons[J], In- formation Fusion ,2003,4(4) :259-280.
  • 3ZHANG Z, BLUM R S, A eategorizafiar of raulti- scale-deco, mpositiml based image fusion schemes with a perfcrmance study for a digital camera appli- cation [J]. proceedings of IEEE, 1999, 37 (3): 1315-1326.
  • 4LI H,MANJUNATH B S,MITRA S K, Mulfisen- sor image fusi0B using the wavelet transform[J]. Graphical Models and Image Processing, 1995,57 (3) :235-245.
  • 5LALLIER E,FAROQ M, Artal time pixel-level based image fusion via adaptive weight a vggflging [C]. Proceeding of tHe 3rd International Cannfer- ence on Information Fusion, 2000,2 : 214- 217.
  • 6PU T, NI G Q, Contrast-based image fusion using the discrete wavelet transform [J]. Optical Engi- neering, 2000,39(8):32075-2082.
  • 7PETROVIC V, Multi-level image fusion [J]. SPIE Proceedings, 2003,5099 : 928- 933.
  • 8BURT P j, K.OLCZYNSKI R J. Enhanced image capture through fusion [C]. The 4th International Conference on Oo, m#uter Vision, Philqdetphia, USA:, 1993,173-182.
  • 9CANGA E F, NIKOLOV S G, CANAGARAJAH C N, et al: Characterisation of image fusion qual-ity metrics for surveillance applications over band- limited channels[C]. 2005 8th International Con- ference on Information Fusion, Philadelphia, USA, 2005:483-490.
  • 10陈浩,王延杰.基于拉普拉斯金字塔变换的图像融合算法研究[J].激光与红外,2009,39(4):439-442. 被引量:74

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部