期刊文献+

基于电容电流状态估计的MMC多管开路故障诊断方法

MMC Multiple IGBT Open-circuit Fault Diagnosis Method Based on Capacitor Current State Estimation
下载PDF
导出
摘要 目前,模块化多电平换流器(modular multilevel converter,MMC)多管开路故障定位方法存在故障阈值难选择、计算过程复杂、需增加额外检测环节等难题。为了解决上述问题,文中基于故障状态下子模块电容电流实际路径与理论路径对比分析,提出将子模块电容电流的理论值和实际值误差作为新的故障诊断特征。采用无模型、鲁棒性强的最小二乘支持向量机最小二乘支持向量机(least square support vector machine,LSSVM)网络作为新的故障定位方案,实现子模块多管开路故障的快速定位。所提方法通过建立子模块电容电流估计方程,基于一阶欧拉近似原理,可通过子模块电容电压估计其电流值,无需增加额外的电流传感器。且相较于现有基于电容电压的故障特征,该特征可在电容电压未严重偏离正常值时,快速反映子模块故障状态。最后,通过Simulink仿真和StarSim硬件在环实验平台,验证所提故障定位策略的有效性。 At present,the fault location method of modular multilevel converter(MMC)has many problems,such as difficult fault threshold selection,complicated calculation process and extra detection link.In order to solve the above problems,this paper proposes the error between the theoretical and actual values of submodule capacitance current as a new fault diagnosis feature based on the comparison analysis between the actual and theoretical paths of sub-module capacitance current under the fault state.A model-free and robust least square support vector machine(LSSVM)network is used as a new fault location scheme to realize the fast location of submodule multi-tube open-circuit faults.The proposed method can estimate the current value of a submodule from its capacitance voltage without adding additional current sensors by establishing the submodule capacitance current estimation equation based on the first-order Euler approximation principle.Compared with existing capacitor voltage-based fault signatures,this feature can quickly reflect submodule fault conditions when the capacitor voltage has not deviated significantly from normal values.Finally,the correctness and effectiveness of the proposed fault location strategy are verified by using Simulink simulation and StarSim hardware-in-the-loop experimental platform.
作者 杨兴武 王江 孟致丞 王雅妮 鲍伟 符杨 黄华 YANG Xingwu;WANG Jiang;MENG Zhicheng;WANG Yani;BAO Wei;FU Yang;HUANG Hua(College of Electrical Engineering,Shanghai University of Electric Power,Yangpu District,Shanghai 200090,China;East China Electric Power Test and Research Institute,Hongkou District,Shanghai 200437,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2023年第23期9297-9309,共13页 Proceedings of the CSEE
基金 上海市科技创新行动计划项目(19DZ1205402) 上海市科技计划项目(23010501200)。
关键词 模块化多电平换流器 故障诊断 开路故障 最小二乘支持向量机 modular multilevel converter(MMC) fault diagnosis open-circuit least square support vector machine(LSSVM)
  • 相关文献

参考文献8

二级参考文献109

  • 1李敏远,陈如清.一种基于模式识别的可控整流电路故障诊断方法[J].电工技术学报,2004,19(7):53-58. 被引量:16
  • 2孙才新.输变电设备状态在线监测与诊断技术现状和前景[J].中国电力,2005,38(2):1-7. 被引量:174
  • 3张志学,马皓,毛兴云.基于混杂系统模型和事件辨识的电力电子电路故障诊断[J].中国电机工程学报,2005,25(3):49-53. 被引量:55
  • 4王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报,2006,26(8):137-141. 被引量:100
  • 5Liu Aimin, Lin Xin, Liu Xiangdong. Fault diagnosis method of high voltage circuit breaker based on (RBF) artificial neural network [C]. 2005 /EEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian, China, 2005: 1-4.
  • 6Yang B S, Hart T, An J L. Neural network for fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 645- 647.
  • 7Luo Zhiyong, Shi Zhongke. Wavelet neural network method for fault diagnosis of push-pull circuits[C]. Proceedings of the 4^th International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005: 3327-3332.
  • 8Li Erguo, Yu Jinshou. Input-training neural network-based nonlinear principal component analysis approach for fault diagnosis [C]. Proceedings of the 4^th World Congress on Intelligent Control and Automation, Shanghai, China, 2002, 4: 2755-2759.
  • 9Lee J M, Yoo C K, Choi S W. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234.
  • 10Lu Peng, Xu Daping, Liu Yibino Method of fault diagnosis on multilayer BP wavelet networks and its applications[C]. Proceedings of the 3^rd International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004: 3296-3299.

共引文献370

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部