期刊文献+

Higher-order optical rabi oscillations

原文传递
导出
摘要 Rabi oscillations express a phenomenon of periodic conversion between two wave states in a coupled system.The finding of Rabi oscillation has led to important applications in many different disciplines.Despite great progress,it is still unknown whether the Rabi oscillating state can be excited in the framework of the higher-order vector vortex regime.Here,we demonstrate in theory that the higher-order vector vortex light beams can be Rabi oscillating during evolution in an optical coupling system.This new classical oscillating state of light is characterized by a topologically shaped wavefront and coupled with spatially varying polarization.The vector vortex state exhibits a harmonic oscillatory property in the resonant and nonresonant conditions but differs greatly in Rabi oscillating frequencies.During Rabi oscillation,the complex state maintains its topology and intensity profile,while its intrinsic polarization pattern varies adiabatically in a periodic manner.We present an interpretation of the Rabi oscillation of the higher-order wave states in terms of the coupled-mode theory.Furthermore,we reveal a symmetry-protected transition between two Rabi oscillating modes,driven by a slowly varying phase mismatch.This Rabi transition has not been reported in either quantum mechanics or any other physical setting.This work advances the research of Rabi oscillation into the higher-order regime,and it may lead to novel applications in classical and quantum optics.
出处 《Fundamental Research》 CSCD 2023年第6期898-903,共6页 自然科学基础研究(英文版)
基金 National Natural Science Foundation of China(11974146 and 62175091) Guangzhou Municipal Science and Technology Project(201904010094) Key-Area Research and Development Program of Guangdong Province(2020B090922006) the Pearl River talent project(2017GC010280).
  • 相关文献

参考文献5

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部