期刊文献+

阴极电流密度对超高强钢锌镍镀层腐蚀及氢脆性能的影响

The Influence of Cathodic Current Density on Corrosion Behavior and Hydrogen Embrittlement of Ultrahigh Strength Steel
下载PDF
导出
摘要 碱性电镀锌镍因生产过程更环保、镀层耐蚀性好等优点,已成为代镉技术的首选。但是,由于氢脆等原因,暂未应用于超高强钢A100的表面防护。采用一种碱性镀液配方,在不同阴极电流密度下对超高强钢A100表面进行电镀及钝化,同时对钝化后的镀层进行了物相、微观形貌、电化学性能、盐雾、氢脆等组织及性能进行表征。结果表明:在阴极电流密度为2—4 A∙dm^(−2)范围内,可得到单一γ相镀层,并且镍含量在12%—13%左右;当阴极电流密度为2 A∙dm^(−2)时,析氢反应进行得比高电流密度时剧烈,电镀效率较低,需要更长的电镀时间才能得到与阴极电流密度为3—4 A∙dm^(−2)时耐蚀性相近的镀层。本镀液配方制备的镀层氢脆性能好,带有镀层的试棒均通过了200 h缺口拉伸测试,且在3—4 A∙dm^(−2)阴极电流密度电镀时渗氢电流也保持在了一个较低水平。 Because of the superior corrosion resistance of the Zn-Ni layers and their ecologically benign manufacture,alkaline Zn-Ni electroplating has supplanted cadmium electroplating as the favored method.Nevertheless,it has not been used to the surface protection of ultra-high-strength steel A100 yet because of hydrogen embrittlement.Here,an alkaline plating solution was used to electroplate and passivate the ultra-high strength steel A100 at varying cathode current densities.The layers'microstructures,electrochemical characteristics,resistance to salt spray,and hydrogen embrittlement were all examined.The findings indicate that a singleγphase would form under a cathode current density range of 2—4 A∙dm^(−2),and that the electroplated layer would contain 12—13 wt%nickel.Lower electroplating efficiency is the result of a more powerful hydrogen evolution process at a cathode current density of 2 A∙dm^(−2),as opposed to higher current densities.Furthermore,compared to electroplating under 3—4 A∙dm^(−2),it takes longer to generate an electroplated layer with respectable corrosion resistance under 2 A∙dm^(−2).The A100 steel has strong resistance against hydrogen embrittlement with the alkaline plating solution.The test bars with electroplated layers can pass the 200-hour notch-tensile tests,and they also maintain a comparatively low hydrogen permeation current under 3—4 A∙dm^(−2).
作者 魏琪 李文 司姗姗 张笑尘 鞠玉琳 严谨 WEI Qi;LI Wen;SI Shanshan;ZHANG Xiaochen;JU Yulin;YAN Jin(Aviation Key Laboratory of Science and Technology on Advanced Surface Engineering/Science and Technology on Power Beam Process Laboratory/AVIC Manufacturing Technology Institute,Beijing 100024,China;Department of Future Steel Research/Ansteel Beijing Research Institute Co.,Ltd.,Beijing 102209,China;College of Ma-terials Science and Engineering/Jiangsu University,Zhenjiang 212013,China;Composite Testing Technology Cen-ter/AVIC Composite Co.,Ltd.,Beijing,101300,China)
出处 《材料研究与应用》 CAS 2023年第6期1101-1108,共8页 Materials Research and Application
基金 中国航空工业“舰载机超高强钢表面防腐工艺研究”(KZ521906)。
关键词 阴极电流密度 锌镍合金镀层 超高强钢 腐蚀性能 氢脆 cathodic current density ZnNi electroplated layer ultrahigh strength steel corrosion resistance hydrogen embrittlement
  • 相关文献

参考文献3

二级参考文献47

  • 1陈心欣,付益平,刘秀珍,张晓东,李万江,赵雪茹,祁绪凤,李淮.电镀锌工艺盐雾试验研究[J].环境技术,2021,39(S01):33-36. 被引量:2
  • 2谭莹,周崎,曹标,陈明.螺钉断裂原因分析[J].金属热处理,2007,32(z1):328-331. 被引量:6
  • 3罗建东.自攻螺钉断裂与表面处理[J].电镀与环保,2005,25(1):37-38. 被引量:2
  • 4SOARES M N, SOUZA C A C, KURI S E. Corrosion resistant of a Zn-Ni electrodeposited alloy obtained with a controlled flow and gelatin additive [J]. Surf Coat Technol, 2006, 201: 2953-2959.
  • 5ASHASSI-SORKHABI H, HAGRAH A, PARVI-AHMADI N, MAN-ZOORI J. Zinc-nickel alloy coating electrodeposited from a chloride bath using direct and pulse current [J]. Surf Coat Technol, 2001, 140: 278-283.
  • 6ZAKI N. Zinc-nickel plating [J]. Met Finish, 1989, 6: 97.
  • 7ORD1NE AP, DIAZ S L, MARGARIT l C P, MATTOS O R. Zn-Ni and Zn-Fe alloy deposits modified by P incorporation properties [J]. Electroehim Acta, 2004, 49: 2815-2823.
  • 8PISTOFIDIS N, VOURLIAS G, KONIDARIS S, PAVLIDOU EL, STERGIOUDIS G. The combined effect of nickel and bismuth on the structure of hot-dip zinc coatings [J]. Mater Lett, 2007, 61: 2007-2010.
  • 9FRATESI R, RUFFINI N, MALAVOLTA M, BELLEZZE T. Contemporary use of Ni and Bi in hot-dip galvanizing [J]. Surf Coat Technol, 2002, 1571: 34-39.
  • 10KANNAN A R S, MuRRALIDHARAN S, SARANGAPANI K B, BALARAMACHANDRAN V, KAPALI V. Corrosion and anodic behavior of zinc and its ternary alloys in alkaline battery electrolytes [J]. J Power Sources, 1995, 57: 93-98.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部