摘要
温度和阴极湿度直接影响质子交换膜燃料电池(PEMFC)的功率密度与内部水分布,由于二者的耦合作用,在工程实际中,PEMFC的高效可靠运行往往需要同时考虑二者的调节关系。因此,针对这一问题,提出了工作温度与阴极湿度双参数对PEMFC性能的协同影响分析。文中对于逆流形式单直通道的PEMFC,构建了三维稳态模型。通过与实验结果对比,验证了模型的正确性,并根据电压变化研究了不同组合下PEMFC功率密度和内部水分布特性。结果表明,在不同电压阶段,质子交换膜(PEM)对温度和阴极湿度的敏感性不同,对两者进行耦合分析,可获得较高的质子交换膜电导率和较宽的功率密度调节域。
The performance of proton exchange membrane fuel cells(PEMFCs)is significantly influenced by their temperature and cathode humidity,as they affect power density and internal water distribution.The interdependent nature of these two parameters necessitates their simultaneous consideration in practical engineering to achieve high efficiency and reliable PEMFC operation.Therefore,this study proposes a synergistic analysis of the dual-parameter effect of working temperature and cathode humidity on PEMFC performance,using a three-dimensional steady-state model for counter-flow single-channel PEMFCs.The model′s correctness is verified through comparison with experimental results,and the resulting power density and internal water distribution characteristics of PEMFCs are studied based on voltage changes.The findings indicate that the sensitivity of the proton exchange membrane(PEM)to temperature and cathode humidity varies at different voltage stages.Coupling analysis of these two factors enhances proton exchange membrane conductivity and expands the range of power density adjustment.Consequently,this study provides crucial insights into the interplay between temperature and cathode humidity in PEMFCs,facilitating the design and optimization of PEMFC systems for practical engineering applications.
作者
马菁
马强
王俊杰
郭镇松
孙亚松
MA Jing;MA Qiang;WANG Junjie;GUO Zhensong;SUN Yasong(School of Automobile,Chang′an University,Xi′an 710018,China;School of Energy and Electrical Engineering,Chang′an University,Xi′an 710018,China)
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2023年第6期1162-1169,共8页
Journal of Northwestern Polytechnical University
基金
国家自然科学基金面上项目(51976014)
陕西省重点研发计划(2020GY-200)
西安市科技计划项目(2022JH-GXQY-0074)资助。
关键词
质子交换膜燃料电池
工作温度
阴极湿度
电池性能
协同分析
proton exchange membrane fuel cell
operating temperature
cathode humidity
battery performance
synergistic analysis