期刊文献+

基于改进YOLOv5s模型的客流密度分析系统设计与实现

Passenger flow density analysis system based on improved YOLOv5s model
下载PDF
导出
摘要 客流密度分析是地铁运营管理、保障乘客安全、构建客流大数据平台的重要基础。针对运营方提出车站、列车车厢客流密度管理的需求,设计了基于改进YOLOv5s模型的客流密度分析系统。该系统通过改进YOLOv5s目标检测模型,引入注意力机制、改进主干网络结构,保持模型轻量化的同时提高人群检测精准度和推理速度。基于北京新机场线乘客信息系统项目测试应用表明,该系统识别速度快、分析精度高,有利于地铁运营对客流的全面监管。 Passenger density analysis is an important foundation for subway operation management,ensuring passenger safety,and building a passenger flow big data platform.This paper designed a passenger flow density analysis system based on the improved YOLOv5s model in response to the operator's demand for station and train carriage passenger flow density management.The system improved the YOLOv5s object detection model,introduced attention mechanism,and improved the backbone network structure to maintain model lightweight while improving crowd detection accuracy and inference speed.The test application of the passenger information system project based on the Beijing New Airport Line shows that the system has fast recognition speed and high analysis accuracy,which is conducive to the comprehensive supervision of passenger flow by subway operations.
作者 张洁溪 田海超 张胜阳 ZHANG Jiexi;TIAN Haichao;ZHANG Shengyang(China Railway Branch(Beijing)Information Engineering Design Consulting Co.Ltd.,Beijing 100081,China;Beijing Jingwei Information Technologies Co.Ltd.,Beijing 100081,China)
出处 《铁路计算机应用》 2023年第12期85-89,共5页 Railway Computer Application
关键词 客流密度 YOLOv5s模型 注意力机制 c2f模块 轻量化 passenger flow density YOLOv5s model attention mechanism c2f module lightweight
  • 相关文献

参考文献8

二级参考文献62

  • 1刘增祥,夏益青.轨道交通列车视频监控系统的集成与实现[J].城市轨道交通研究,2010,13(3):66-68. 被引量:8
  • 2张恩伟.基于ADSP-BF561芯片的智能视频分析仪[J].中国公共安全,2013(6):132-133. 被引量:1
  • 3王永翔,王立德,王保华,罗妮娜.机车故障诊断系统中的司机室显示屏[J].铁道学报,2006,28(3):67-70. 被引量:9
  • 4WENG Muyun. HUANG Guoce , DA Xinyu. A New Interframe Difference Algorithm for Moving Target Detection[C]// Image and Signal Processing (CISP), 20113rd International Congress on IEEE, Yantai, China, Oct 16-18, 2011, 1: 285-289.
  • 5Senst T, Evangelio R H, Sikora T. Detecting People Carrying Objects Based on an Optical Flow Motion Model[C]// Applications of Computer Vision (WACV) , IEEE Workshop on IEEE(SI550-5790), Kona. USA, Jan 5-7,2011: 301-306.
  • 6Mohaned S S, Tahir N M, Adnanr R. Background Modeling and Background Subtraction Performance for Object Detection[C]// Signal Processing and Its Applications(CSPA), 2010 6th International Colloquium on IEEE, Mallaca City, May 21-23, 2010: 1-6.
  • 7Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]// Computer Vision and Pattern Recognition, 1999 IEEE Computer Society Conference on IEEE(S1063-6919), Fort Collins, USA, lun 23-25, 1999, 2: 246-252.
  • 8Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings ofthe IEEE(SOOI8-9219), 2002, 90(7): 1151-1163.
  • 9WANG Hanzi. Suter D. A consensus-based method for tracking: Modeling background scenario and foreground appearance[J]. Pattern Recognition(S0031-3203), 2007, 40(3): 1091-1105.
  • 10Olivier B, Marc V D. Vibe: A Universal Background Subtraction Algorithm for Video Sequences[J]. IEEE Transactions on Image Processing(SI057-7149), 2011, 20(6): 1709-1724.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部