摘要
双波长发射的长余辉纳米材料在信息加密与防伪方面有着重要的应用潜能。采用水热和煅烧结合的方法,制备了具有双波长发射的Zn_(2)Si_(x)O_(4)∶Ga_(0.01)(x=0.8~1.2)长余辉纳米颗粒。通过优化合成过程中前驱体溶液的pH值和硅离子含量,使Zn_(2)Si_(x)O_(4)∶Ga_(0.01)获得了较好的长余辉发光性能。研究结果表明,Ga^(3+)掺杂对Zn_(2)SiO_(4)的晶体结构没有影响,当前驱体溶液pH值为7时,Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01)纳米颗粒分散性较好,平均粒径为(86.18±1.26)nm。在254 nm紫外光激发下,Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01)在417和770 nm两个波长下发射,417 nm下的平均发光寿命(τav)为54.05 s,770 nm下的平均发光寿命为96.35 s,在近红外区可观察到216 h的余辉发光,并成功应用于多模动态防伪中。双波长发射的Zn_(2)Si_(x)O_(4)∶Ga_(0.01)还将在生物传感与成像等领域具有潜在应用价值。
Persistent luminescence nanomaterials with dual-wavelength emission have great potentials in information encryption and anti-counterfeiting.Zn_(2)Si_(x)O_(4)∶Ga_(0.01)(x=0.8-1.2)persistent luminescence nanoparticles with dual-wavelength emission were prepared with a method of combining hydrothermal and calcination.Zn_(2)Si_(x)O_(4)∶Ga_(0.01) with excellent persistent luminescence performance was obtained by optimizing the pH value and the Si^(4+)content of precursor solution during the synthesis process.The results show that Ga^(3+)doping has no effect on the crystal structure of Zn_(2)SiO_(4).When the pH of the precursor solution is 7,Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01) nanoparticles has better dispersion and the average particle size is(86.18±1.26)nm.Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01) is emitted at 417 and 770 nm wavelengths under UV excitation at 254 nm.The average luminescence lifetimes(τav)of Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01) are 54.05 s at 417 nm and 96.35 s at 770 nm,and the 216 h afterglow luminescence of Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01) is observed in the near infrared region.Moreover,Zn_(2)Si_(1.1)O_(4)∶Ga_(0.01) is successfully applied to multi-mode dynamic anticounterfeiting.Dual-wavelength emission Zn_(2)Si_(x)O_(4)∶Ga_(0.01) will also has potential applications in biosensing and imaging fields.
作者
周洁
乔湘凯
何凤贵
海仁沙·麦麦提依力
阿不都卡德尔·阿不都克尤木
Zhou Jie;Qiao Xiangkai;He Fenggui;Hairensha Maimaitiyili;Abdukader Abdukayum(Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry,College of Chemistry and Environmental Sciences,Kashi University,Kashi 844000,China)
出处
《微纳电子技术》
CAS
北大核心
2023年第11期1784-1792,共9页
Micronanoelectronic Technology
基金
新疆维吾尔自治区自然科学基金资助项目(2022D01E16)
新疆维吾尔自治区高校科研计划资助项目(XJEDU2018I017)。