期刊文献+

具有恐惧效应的随机捕食-食饵模型动力学

Dynamics of a Stochastic Predator-Prey Model with Fear Factor
下载PDF
导出
摘要 研究具有恐惧效应的随机捕食-食饵模型。证明对于任意给定的初始值,系统都存在唯一的全局正解;应用随机微分方程的比较定理,得到系统的平均持续生存与灭绝的充分条件;证明系统存在唯一的平稳分布且具有遍历性。最后,通过数值模拟来验证主要结果。 In this paper,the dynamics of a stochastic predator-prey model with fear factor were investigated.First of all,it was proved that there was a unique positive global solution starting from any given initial value.Then,sufficient conditions for extinction and persistence in mean were obtained by comparison theorem for stochastic differential equations.In addition,it was proved that there were unique stationary distribution and they are ergodic.Finally,some numerical simulations were introduced to verify the main results.
作者 李江 魏春金 LI Jiang;WEI Chunjin(School of Science,Jimei University,Xiamen 361021,China)
机构地区 集美大学理学院
出处 《集美大学学报(自然科学版)》 CAS 2023年第5期397-406,共10页 Journal of Jimei University:Natural Science
基金 国家自然科学基金项目(11971405,22072057) 福建省自然科学基金项目(2018J01418)。
关键词 捕食-食饵模型 恐惧效应 全局正解的存在唯一性 平稳分布 持久 灭绝 predator-prey model fear factor existence and uniqueness of global positive solution stationary distribution persistence extinction
  • 相关文献

参考文献3

二级参考文献19

  • 1S. Aida, S. Kusuoka and D. Strook, On the support of Wiener functionals, in Asymp- totic Problems in Probability Theory: Wiener Functionals and Asymptotic, eds. K. D. Elworthy and N. Ikeda, Pitman Research Notes in Mathematics Series, Vol. 284 (Longman Scientific and Technical Publisher, 1993), p. 3.
  • 2G. B. Arous and R. Landre, Dcroissance exponentielle du noyau de la chaleur sur la diagonale (11), Probab. Theory Relat. Fields 90 (1991) 377.
  • 3M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Left. 16 (2003) 1069-1075.
  • 4J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anita. Ecol. 44 (1975) 331-340.
  • 5D. R. Bell, The Malliavin Calculus (Dover Publications, New York, 2006).
  • 6N. Dalai, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl. 325 (2007) 36-53.
  • 7C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Men. Ent. See. Can. 45 (1965) 1-60.
  • 8C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009) 482-498.
  • 9C. Y. Ji, D. Q. Jiang and N. Z. Shi, A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 377 (2011) 435-440.
  • 10Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator- prey system, J. Math. Biol. 36 (1998) 389-406.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部