摘要
目的为解决当前青少年心理健康服务供需失衡和质量良莠不齐等问题,研究应用深度学习技术,实现青少年心理问题早期的智能咨询、筛查、评估及初步干预。方法通过对心理学理论及案例进行解析,构建基于因果关系的认知事理图谱和策略驱动的心理咨询对话大模型,实现自动生成回复、评估和简单干预等。结果经过对随机抽取的100例数据进行测试,表明该模型能够更好地理解和处理心理咨询问题,完成部分筛查、咨询和科普工作。结论本研究验证了深度学习技术在青少年心理健康领域的应用价值,特别是构建的大模型在当前青少年心理服务支持资源不足的情况下,提供了一种可推广、可复制的线上心理服务新模式。
Objective In order to address the existing disparities in the provision of adolescent mental health services and the variability in quality,this study explores the application of deep learning technology to facilitate early intelligent counseling,screening,assessment,and initial intervention for adolescent mental health issues.Methods By analyzing psychological theories and cases,the project will construct a causal knowledge graph and attempt to build a strategy-driven conversational large model for psychological counseling.This model aims to achieve automatic response generation,assessment,and basic intervention.Results After testing 100 random cases,the model demonstrates a better understanding and performance in handling psychological counseling tasks,including screening,counseling,and providing information.Conclusion This research validates the application value of deep learning technology in the field of adolescent mental health.In the current context of inadequate resources for adolescent mental health services,it offers a scalable and replicable online mental health service model.
作者
殷亦超
陈亮亮
杜渂
YIN Yichao;CHEN Liangliang;DU Wen(Shanghai Changning District Mental Health Center,Shanghai 200335,China)
出处
《中国卫生信息管理杂志》
2023年第6期881-887,911,共8页
Chinese Journal of Health Informatics and Management
基金
上海市卫生健康委员会卫生健康政策研究课题(定向委托)“上海市卫生信息化标准分类框架研究”(项目编号:2023HP27)
上海市促进产业高质量发展专项资金“基于知识图谱的认知推理引擎与应用模型算法库及工具”(项目编号:2021-GZL-RGZN-01018)
上海长宁区卫生健康系统星云计划“数智技术辅助儿童青少年心身障碍识别干预”(项目编号:CNWJXY026)。
关键词
心理语言模型
生成式人工智能
青少年心理健康服务
psychological language model
generative artificial intelligence
adolescent mental health services