期刊文献+

基于双向记忆传导的ICD自动编码方法

ICD Automatic Encoding Method Based on Bidirectional Memory Conduction
下载PDF
导出
摘要 目的基于深度学习技术,探讨国际疾病分类(ICD)自动编码的方法。方法提取50095例来自麻省理工学院下属重症监护医学信息数据集信息齐全患者的诊断报告和诊断编码,实现一种基于双向记忆传导机制的注意力卷积神经网络,将记忆传导能力引入层级设计的注意力卷积神经网络中。从顺序因果约束和层级关联角度建模,高效捕获诊断文本常见的长序列依赖语境,同时利用层级间特征,提升编码特征重用性。比较本文网络与其他改进网络的性能。结果测试集的平均Macro F1值、Micro F1值、Macro ROC-AUC、Micro ROC-AUC和P@5较其他网络都有所改善,平均预测1名患者的诊断编码只需0.05s。结论经过改进网络设计,能较为准确地实现ICD的自动编码,编码时间相比人工编码大幅缩短,实际应用中可提高编码的工作效率,降低人工编码工作量。 Objective This article proposes a deep learning based method to explore the accuracy of automatic encoding for the International Classification of Diseases(ICD).Methods Extract diagnostic reports and diagnostic codes from 50095 patients with complete information from the Massachusetts Institute of Technology’s intensive care medical information datasets,and implement an attention convolution neural network based on bidirectional memory conduction mechanism.Introduce memory conduction ability into the hierarchical design of the attention convolution neural network.Modeling from the perspective of sequential causal constraints and hierarchical correlations,efficiently capturing common long sequence dependent contexts in diagnostic texts,while utilizing inter hierarchical features to enhance the re-usability of coding features.Compare the performance of this network with other improved networks.Results The average Macro F1 value,Micro F1 value,Macro ROC-AUC,Micro ROC-AUC,and P@5 of the test set improved compared to other networks,with an average prediction time of only 0.05s for a patient’s diagnostic code.Conclusion After improving the network design,the automatic encoding of ICD can be achieved more accurately,and the encoding time is significantly shortened compared to manual encoding.In practical applications,the efficiency of encoding can be improved,and the workload of manual encoding can be reduced.
作者 宋凡 杨鑫 王毅 余俊蓉 SONG Fan;YANG Xin;WANG Yi;YU Junrong(The First Affiliated Hospital of Sun Yat-sen University,Guangzhou 510080,Guangdong,China)
出处 《中国卫生信息管理杂志》 2023年第6期977-984,996,共9页 Chinese Journal of Health Informatics and Management
基金 广东省基础与应用基础研究基金“基于国产医用直线加速器的‘一站式’放射治疗事件学习和警讯上报系统”(项目编号:2021A1515220140)。
关键词 编码准确率 自动编码 深度学习 记忆力机制 注意力机制 coding accuracy automatic coding deep learning memory mechanism attention mechanism
  • 相关文献

参考文献6

二级参考文献49

  • 1黄丹.网络医疗对医疗服务理念的挑战[J].中药研究与信息,2005,7(9):31-32. 被引量:4
  • 2Grishman R, Sundheim B. Message Understanding Conference-6: a.brief history // COLING. Copen- hagen, 1996, 96:466-471.
  • 3Doddington G R, Mitchell A, Przybocki M A, et al. The automatic content extraction (ACE) program- tasks, data, and evaluation // LREC. Lisbon, 2004: 837-840.
  • 4DiSantostefano J. International classification of diseases 10th revision (ICD-10). The Journal for Nurse Practitioners, 2009, 5(1): 56-57.
  • 5Lindberg D A, Humphreys B L, McCray A T. The unified medical language system. Methods of Infor- mation in Medicine, 1993, 32(4): 281-291.
  • 6McDonald C J, Overhage J M, Tierney W M, et al. The regenstrief medical record system: a quarter century experience. International Journal of Medical Informatics, 1999, 54(3): 225-253.
  • 7Kraus S, Blake C, West S L. Information extraction from medical notes //Medinfo 2007. Brisbane, 2007: 1-2.
  • 8Sondhi P, Gupta M, Zhai C X, et al. Shallow information extraction from medical forum data // Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics. Beijing, 2010:1158-1166.
  • 9Luhn H E The automatic creation of literature abstracts. IBM Journal of Research and Development, 1958, 2(2): 159-165.
  • 10Lafferty J, McCallum A, Pereira F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data//ICML'01 Proceedings of the Eighteenth International Conference on Machine Learning. San Francisco, 2001:282-289.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部