期刊文献+

排水管道表面激光制备自清洁仿生结构的工艺与机理研究

Research on the Technology and Mechanism of Laser Generated Self-Cleaning Bionic Structures on the Surface of Drainage Pipes
原文传递
导出
摘要 针对球墨铸铁排水管道提出一种复合激光化学法制备超疏水微/纳结构的方法,采用飞秒脉冲激光刻蚀获取不同扫描速度下的微/纳结构,通过工艺探索对激光刻蚀参数和表面形貌进行优化。结果表明,微结构周期性完整,表面主要由纳米颗粒、裂纹和波纹组成,当激光加工速度小于225 mm/s时,试样表现出超疏水性,接触角最大可达161.3°±1.2°;当加工速度小于150 mm/s时,具有显著的自清洁特性,滑移角最小可达6.8°±2.1°。同时对不同工艺制备试样的化学耐久性和耐腐蚀性进行了比较,为球墨铸铁排水管道保护和再利用的模式与路径探索提供了新的思路与方法。 In this paper,a composite laser chemical method for preparing super hydrophobic micro/nano structures for ductile i-ron drainage pipes is proposed.Femtosecond pulse laser etching was used to obtain micro/nano structures at different scanning speeds.The results show that the microstructure is periodic and complete,and the surface is mainly composed of nano parti-cles,cracks and ripples.When the laser processing speed is less than 225 mm/s,the sample shows superhydrophobicity,and the maximum contact angle can reach 161.3°±1.2°.When the machining speed is less than 150 mm/s,it has significant self-cleaning characteristics,and the minimum slip angle can reach 6.8°±2.1°.At the same time,the chemical durability and cor-rosion resistance of samples prepared by different processes are compared,which provides a new idea and method for exploring the modes and pathways of protection and potential reuse of ductile iron drainage pipes.
作者 黄浩辉 雷宗辉 胡静仪 袁悦芳 陈俊 Huang Haohui;Lei Zonghui;Hu Jingyi;Yuan Yuefang;Chen Jun(Dongguan Water Group Piping Network Co.,Ltd.,Dongguan 523000,Guangdong,China)
出处 《应用激光》 CSCD 北大核心 2023年第11期78-84,共7页 Applied Laser
关键词 排水管道 激光加工 仿生微结构 自清洁 超疏水 drainage pipe laser processing biomimetic microstructure self cleaning superhydrophobic
  • 相关文献

参考文献5

二级参考文献158

  • 1金鹏康,郝晓宇,王宝宝,郭海泉,张荔.城市污水管网中水质变化特性[J].环境工程学报,2015,9(3):1009-1014. 被引量:21
  • 2Aksay I A, Trau M, Manne S, et al. Biomimetic pathways for assembling inorganic thin films. Science, 1996, 273:892-898.
  • 3Cahn R W. Imitating nature's designs. Nature, 1996, 382:684.
  • 4Cha J N, Stucky G D, Morse D E, et al. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature, 2000, 403:289-292.
  • 5Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater, 2005, 4:277-288.
  • 6Moutos F T, Freed L E, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater, 2007, 6:162-167.
  • 7Bellamkonda R V. Biomimetic materials-Marine inspiration. Nature Mater, 2008, 7:347-348.
  • 8Behrens P, Bauerlein E. Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry. Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA, 2007.
  • 9Jones J B, Sanders J V, Segnit E R. Structure of Opal. Nature, 1964, 204:990-991.
  • 10Parker A R, Welch V L, Driver D, et al. Structural colour -Opal analogue discovered in a weevil. Nature, 2003, 426:786-787.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部