期刊文献+

基于数据挖掘和LSSVM的电量大数据多维感知方法 被引量:1

Multidimensional Perception Method for Power Big Data Based on Data Mining and LSSVM
下载PDF
导出
摘要 为了解决现有电量大数据多维感知方法存在感知性能差的问题,利用数据挖掘技术和LSSVM算法实现对感知方法的优化设计。利用数据挖掘技术构建多维电量数据模型,通过填补缺失数据、修正错误数据和数据标准化等3个步骤,从趋势性、变动性及负荷等3个方面提取电量大数据特征;利用LSSVM算法预测多维电负荷变化量,进行电量大数据多维感知。实验结果表明,所提方法的拟合误差降低了8.4 kW,敏感度指数提高了0.388,电量大数据多维感知性能较优。 In order to solve the problem of poor perception performance of the existing multidimensional perception methods of power big data,the optimal design of perception methods is realized by data mining technology and LSSVM algorithm.The multidimensional electricity data model is constructed by data mining technology.Through three steps of filling in missing data,correcting wrong data and data standardization,the characteristics of electricity big data are extracted from three aspects of trend,variability and load.The multidimensional electricity load variation is predicted by LSSVM algorithm,and the multidimensional perception of electricity big data is carried out.The experimental results show that the fitting error of this method is reduced by 8.4 kW,the sensitivity index is increased by 0.388,and the multidimensional perception performance of electricity big data is better.
作者 岳宝强 杨波 李彪 曲小康 魏飞 YUE Baoqiang;YANG Bo;LI Biao;QU Xiaokang;WEI Fei(Linyi Power Supply Company of State Grid Shandong Electric Power Company,Linyi 276000,China)
出处 《微型电脑应用》 2023年第12期58-61,84,共5页 Microcomputer Applications
基金 国网临沂供电公司2021年研究开发项目(5206002000VM)。
关键词 数据挖掘技术 LSSVM 电量大数据 多维感知 data mining technology LSSVM electricity big data multidimensional perception
  • 相关文献

参考文献7

二级参考文献78

共引文献135

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部