期刊文献+

形状记忆合金变刚度软作动器设计

Design of Variable Stiffness Soft Actuator Driven by Shape Memory Alloy
下载PDF
导出
摘要 软体材料作动器具有良好的目标抓取适应性,为实现软作动器结构的轻量化,保证抓取与承载能力,采用形状记忆合金丝作为驱动元件,设计出一种可变刚度的软作动器。首先,基于形状记忆合金(shape memory alloy,简称SMA)一维本构关系建立了作动器的弯曲变形力学模型;其次,通过实验对力与变形之间的关系进行了验证,弯曲变形与理论结果一致;最后,通过回弹结构的动力学设计,使得该作动器能够在恢复阶段快速回到初始形态。实验结果显示,加热用于变刚度的形状记忆合金丝可显著提升作动器的负载能力,从而达到变刚度的效果。 The soft gripper exhibits high adaptability when grasping a target.In order to achieve the lightweight design while ensuring capacity of grasping and carrying,the shape memory alloy(SMA)wire is utilized as the actuation source in the paper.The phase transformation characteristics of shape memory alloys are applied to perform the variable stiffness task of a soft actuator.The one-dimensional constitutive model of the shape memory alloy is established to construct the theoretical model of the bending angle of the actuator.In addition,the deformation test for shape memory alloy is carried out.Obtained results show that the theoretical model can reflect the actual bended angle.Moreover,when the SMA wire for variable stiffness is heated,the load-bearing capacity of the actuator is notably improved.
作者 任旭 杨书吉 文浩 金栋平 REN Xu;YANG Shuji;WEN Hao;JIN Dongping(State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics Nanjing,210016,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2023年第6期1164-1168,1246,共6页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金重点资助项目(11832005,11732006)。
关键词 形状记忆合金 可变刚度 本构模型 软体作动器 shape memory alloy variable stiffness constitutive model soft actuator
  • 相关文献

参考文献3

二级参考文献17

  • 1Nagano Prefectural Rehabilitation Center, available online at: http://www.pref.nagano.jp/xsyakai/rehaJrehaAoo/reha_.po- view.htm.
  • 2H. Kawasaki, T. Komatsu, K. Uchiyama, Dexterousanthropomorphic robot hand with distributed tactile sensor: Gifu hand II, IEEE/ASME Transactions on Mechatronics 7 (3) (2002) 296-303.
  • 3A. Jaffar, M.S. Bahari, C.Y. Low, R. Jaafar, Design and control of a multifingered anthropomorphic robotic hand, International Journal of Mechanical and Mechatronics Engineering 11 (4) (2011) 26-33.
  • 4M.A. Saliba, M. Axiak, Design of a compact, dexterous robot hand with remotely located actuators and sensors, in: Proceedings of the 15th Mediterranean Conference on Control and Automation, 2007, T30-009.
  • 5H. Kobayashi, R. Ozawa, Adaptive neural network control of tendon-driven mechanisms with elastic tendons, Automatica 39 (9) (2003) 1509-1519.
  • 6L Yamano, T. Maeno, Five-fingered robot hand using ultrasonic motors and elastic elements, in: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 2684-2689.
  • 7K, Suzumori, S. Wakimoto, T. Kanda, M. Takahashi, T. Hosoya, E. Takematu, Development of power robot hand with shape adaptability using hydraulic McKibben muscles, in: Proceedings of IEEE International Conference on Robotics and Automation, 2010, pp. 1162-1168.
  • 8N. Tsujiuchi, T. Koizumi, H. Komatsubara, Y. Kudawara, M. Shimizu, Development of robot hand with pneumatic actuator and construct of master-slave system, in: Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 3027-3030.
  • 9Y. Kimura, T. Nakm-nura, Development of the robot hand using wire type artificial rubber muscle, JSME 11-5 (2011) IAl-106.
  • 10J.T. Belter, A.M. Dollar, Performance characteristics of anthropomorphic prosthetic hands, in: Proceedings of IEEE International Conference on Rehabilitation Robotics, 2011, pp. 921-927.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部