摘要
电动汽车充放电行为的随机性,导致充放电站运行数据波动性强、指标间权重差距大,传统方法难以全面准确评估其充放电站的并网性能。为此,提出了一种电动汽车充放电站并网性能的综合评估方法。首先,提出了包含安全性、适应性、稳定性等5项准则的综合评估指标体系。其次,采用Apriori算法处理指标间关联关系。同时引入博弈思想将网络分析(Analyticnetworkprocess, ANP)法与基于指标相关性的指标权重确定法结合以确定指标的最优组合权重。基于最优组合权重和基于逼近理想解排序法建立评估模型,对各充放电站并网的综合性能进行量化分析。最后,采用某市电动汽车充放电站运行数据对所提方法进行验证,并与已有评估方法进行对比。结果表明所提评估体系与评估方法的有效性和优越性。
The randomness of EV charging and discharging behavior leads to strong fluctuation of running data and large difference of weights among indexes,thus it is difficult for traditional methods to evaluate the grid-connected performance of EV charge and discharge stations comprehensively and accurately.Therefore,a comprehensive evaluation method for grid-connected performance of EV charge and discharge stations is proposed.First,a comprehensive evaluation index system including 5 criteria such as safety,adaptability and stability is proposed.Second,the Apriori algorithm is used to process the correlation between indicators.At the same time,a game idea is introduced to combine the ANP and CRITIC methods to determine the optimal combination weight of indicators.Based on the optimal combination weight and the TOPSIS method,an evaluation model is established to quantitatively analyze the comprehensive performance of grid-connected charge and discharge stations.Finally,the proposed method is verified by using the operating data of an EV charge and discharge station in a city,and compared with the existing evaluation methods.The results show that the proposed evaluation system and evaluation method are effective and superior.This work is supported by the National Natural Science Foundation of China(No.U22B20103).
作者
于浩
张大海
赵轩
张元星
和敬涵
YU Hao;ZHANG Dahai;ZHAO Xuan;ZHANG Yuanxing;HE Jinghan(School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China;Beijing Electric Vehicle Charging/Battery Swap Engineering and Technology Research Center,China Electric Power Research Institute,Beijing 100192,China)
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2023年第24期121-133,共13页
Power System Protection and Control
基金
国家自然科学基金项目资助(U22B20103)。