期刊文献+

基于BB-递归核函数SVR算法的U型折弯件模型参数优化研究

Parameter optimization of U-bend model based on SVR algorithm with BB-recursive Kernel function
下载PDF
导出
摘要 影响U型折弯件回弹的因素众多,工件尺寸、力学性能、负载条件、材料各向异性等相互耦合,表现出高度复杂的非线性,从而导致回弹预测结果的不确定性。本研究以板料折弯件回弹后的张开角(α)为目标函数,构建一个递归核函数支持向量回归(SVR)模型,并部署到分支界限法(BB)中,从而筛选出维度为4的最优的特征变量参数子集,其决定系数(R^(2))为0.982147,均方误差(MSE)为0.00433,模型预测精度相对较高。算法优化得到的折弯件参数为:厚度(t)为12 mm,上模宽度(d)为90 mm,上模圆角半径(r)为9 mm,载荷速度(v)为10 mm/s。BB递归核函数SVR算法、有限元模拟和实际测量的α分别为16.3°、17.5°和18.2°,尽管有限元结果更接近于实际值,但是BB递归核函数SVR算法可以为有限元模拟提供筛选出的参数(t,d,r,v)的数据,以快速进行模拟并预测张开角α,并实现回弹补偿装置的高效设计。 There are many factors affecting the springback of U-bend bending parts,such as workpiece size,mechanical properties,load conditions and material anisotropy,which are highly nonlinear and lead to the uncertainty of springback prediction.In this study,a support vector regression(SVR)model with recursive kernel function was constructed,and deployed to the branch and bound(BB)method to select the optimal feature variable parameter subset with the dimension of 4.The coefficient of determination(R^(2))was 0.982147 and the mean square error(MSE)was 0.00433,indicating that the prediction accuracy of the model was relatively high.The bending part thickness(t)was 12 mm,the upper die width(d)was 90 mm,the upper die fillet radius(r)was 9 mm,and the load speed(v)was 10 mm/s.The BB recursive kernel SVR algorithm,the finite element simulation,and the actual measuredαare 16.3°,17.5°,and 18.2°,respectively.Although the finite element results are closer to the actual values,the BB recursive kernel SVR algorithm can provide the data of the filtered parameters(t,d,r,v)for the finite element method(FEM)to quickly perform the simulation and predict the angleα,and the efficient design of the springback compensation device is realized.
作者 徐承亮 胡梓枫 曹志勇 张详林 XU Chengliang;HU Zifeng;CAO Zhiyong;ZHANG Xianglin(Guangzhou Vocational College of Technology&Business,GuangZhou 511442,China;School of Materials Science and Engineering,Hubei University,Wuhan 430062,China;State Key Laboratory of Material Forming and Die Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《湖北大学学报(自然科学版)》 CAS 2024年第1期115-121,共7页 Journal of Hubei University:Natural Science
基金 广东省普通高校特色创新项目(自然科学类)(2018GKTSCX053) 2021年度广州市基础研究计划基础与应用基础研究基金(2021-02-08-13-0018) 材料成形与模具技术国家重点实验室基金(P2021-016)资助。
关键词 U型折弯件 支持向量机 分支界限法 SVR算法 U-bend bending parts support vector mechine(SVM) Branch and Bound SVR algorithm
  • 相关文献

参考文献10

二级参考文献56

  • 1张杰,周磊,张洪,叶林.飞机结冰探测技术[J].仪器仪表学报,2006,27(12):1578-1586. 被引量:55
  • 2杨淑莹,张桦.群体智能与仿生计算-MATLAB技术实现[M].北京:电子工业出版社,2012:157-160.
  • 3Vapnik V.The nature of statistical learning theory[M].New York:Wiley,1998.
  • 4申慧珺.基于改进网格搜索法SVM参数优化的说话人识别研究[D].哈尔滨:哈尔滨工程大学,2012-03.
  • 5Ilhan I,Tezel G.A genetic algorithm-support vector machine method with parameter optimization for selecting the tag SNPs[J].Journal of Biomedical Informatics,2013,46:328-340.
  • 6Abdi M J,Giveki D.Automatic detection of erythematosquamous diseases using PSO-SVM based on association rules[J].Engineering Applications of Artificial Intelligence,2013,26:603-608.
  • 7海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005-10.
  • 8叶玉刚,薛勇,段江年.板料成形回弹模拟及补偿技术研究现状[J].锻压装备与制造技术,2009,44(3):18-22. 被引量:19
  • 9张培林,钱林方,曹建军,任国全.基于蚁群算法的支持向量机参数优化[J].南京理工大学学报,2009,33(4):464-468. 被引量:35
  • 10周忠海,翟世奎,徐志刚,常松.基于核主成份分析的卫星识别研究[J].武汉理工大学学报,2009,31(23):118-121. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部