摘要
Parkinsonism by unilateral,intranigralβ-sitosterolβ-D-glucoside administration in rats is distinguished in that theα-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time,thus replicating several clinical features of Parkinson’s disease,a typicalα-synucleinopathy.As Nurr1 repressesα-synuclein,we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateralβ-sitosterolβ-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection.This study found that rNurr1-V5 expression but not that of the green fluorescent protein(the negative control)reducedβ-sitosterolβ-D-glucoside-induced neuropathology.Accordingly,a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum.In addition,tyrosine hydroxylase-positive cells displayed less senescence markerβ-galactosidase and more neuron-cytoskeleton markerβIII-tubulin and brain-derived neurotrophic factor.A significant decrease in activated microglia(positive to ionized calcium-binding adaptor molecule 1)and neurotoxic astrocytes(positive to glial fibrillary acidic protein and complement component 3)and increased neurotrophic astrocytes(positive to glial fibrillary acidic protein and S100 calcium-binding protein A10)also occurred in the substantia nigra.These effects followed the bilateral reduction inα-synuclein aggregates in the nigrostriatal system,improving sensorimotor behavior.Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration(senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells),neuroinflammation(activated microglia,neurotoxic astrocytes),α-synuclein aggregation,and sensorimotor deficits.Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect,supporting its potential clinical use in the treatment of Parkinson’s disease.