期刊文献+

基于改进YOLOv7-tiny的坦克车辆检测方法 被引量:1

Tank vehicle detection method based on improved YOLOv7-tiny
下载PDF
导出
摘要 针对不同种类无人机航拍高度相差较大、图像分辨率不佳引起的坦克车辆检测算法效果不佳、速度慢等问题,提出一种基于改进YOLOv7-tiny的无人机视角坦克车辆检测算法。首先构建包含568幅图像、2132个目标的坦克车辆数据集。其次对YOLOv7-tiny网络进行3个方面改进:提出了AC-ELAN网络结构并加入3D注意力机制,提高对目标信息的提取能力;引入SPPCSPC结构进一步扩大模型的感受野,同时能够有效减少训练学习时间;将损失函数计算方法替换为WIoU,聚焦于普通质量锚框,加速了模型收敛。最后实验结果表明,改进算法在自建数据集上表现优异,比传统的YOLOv7-tiny平均精度提升5.0%,在GPU设备上检测速度达到71帧/s,能够在无人机计算平台实现实时检测。 Aiming at problems such as the ineffective and slow speed of the tank vehicle detection algorithm caused by the large difference in the aerial photography height of UAV,we proposed a tank vehicle detection algorithm from UAV perspective based improved YOLOv7-tiny.In terms of data sets,a tank vehicle dataset containing 568 images and 2132 targets was constructed.In terms of algorithms,an AC-ELAN structure was proposed to enhance image feature recognition and a 3D attention mechanism was incorporated to improve the ability to extract target information;The SPPCSPC structure was introduced to further expand the receptive field,at the same time,it can also effectively reduce the training and learning time;The loss function calculation method was replaced by WIoU,which focuses on the common quality anchor box,and this method accelerates the model convergence.The experimental results show that the improved algorithm in this paper performs well on the self-built dataset,compared with the traditional YOLOv7-tiny,the average precision is increased by 5.0%.The detection speed on the GPU device reaches 71 FPS,the experimental results illustrate that our algorithms can achieve real-time detection on UAV computing platforms.
作者 郑陆石 胡晓锋 于伟国 赵东志 张鸿涛 ZHENG Lushi;HU Xiaofeng;YUWeiguo;ZHAO Dongzhi;ZHANG Hongtao(l.School of Mechatronics Engineering,North university of China,Taiyuan 030051,China;Norinco Group Norendar Internationa Ltd.,Shijiazhuang 050011,China;Hua An Industry Group Co.,Ltd.,Qiqihar 161006,China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第12期285-292,共8页 Journal of Ordnance Equipment Engineering
基金 山西省技术基础科研项目(JSZL2019408B001)。
关键词 目标检测 YOLOv7-tiny网络 非对称卷积 3D注意力机制 WIoU损失 object detection YOLOv7-tiny network asymmetric convolutions 3D attention mechanism WIoU loss
  • 相关文献

参考文献7

二级参考文献49

共引文献88

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部