摘要
在Lorenz规范条件下,研究了(1+1)维Maxwell-Chern-Simons-Higgs波动系统.利用Sobolev嵌入不等式和压缩映射不动点定理证明了(1+1)维Maxwell-Chern-Simons-Higgs系统的Cauchy问题在H2×H1空间上具有局部适定性.
Under the Lorenz gauge condition,the(1+1)-dimensional Maxwell-Chern-Simons-Higgs wave system was studied.And the local well-posedness of the Cauchy problem of the(1+1)-dimensional Maxwell-Chern-Simons-Higgs system in H^(2)×H^(1) space was proved by Sobolev embedding inequality and the contraction mapping fixed point theorem.
作者
孟嘉乐
MENG Jiale(College of Science,Yanbian University,Yanji 133002,China)
出处
《延边大学学报(自然科学版)》
CAS
2023年第4期341-344,371,共5页
Journal of Yanbian University(Natural Science Edition)