摘要
情绪识别已广泛应用于教学效果评估和心理疾病检测等场景,面部动作单元检测是情绪识别的关键步骤。在图卷积神经网络基础上,融合残差网络(Residual Network,ResNet)、压缩激励网络(Squeeze and Excitation Networks,SENet)、全卷积神经网络(Fully Convolutional Networks,FCN)4种网络结构,建立带有注意力机制的面部动作单元检测模型,并在丹佛大学自发面部运动单元数据库(Denver Intensity of Spontaneous Facial Action,DISFA)和CK+两个公共数据集上进行了验证实验。实验结果表明,该模型的性能优于传统面部动作单元检测模型。
Emotion recognition has been widely applied in teaching effectiveness evaluation and psychological disease detection scenarios,and facial action unit detection is a key step in emotion recognition.On the basis of graph convolutional neural networks,a facial action unit detection model with attention mechanism is established by integrating four network structures:Residual Network(ResNet),Squeeze and Excitation Networks(SENet),and Fully Convolutional Networks(FCN),And validation experiments were conducted on the Denver Intensity of Spontaneous Facial Action(DISFA)and CK+public datasets at the University of Denver.The experimental results show that the performance of this model is superior to traditional facial action unit detection models.
作者
杨晓峰
YANG Xiaofeng(School of Computer Engineering,Shanxi Vocational University of Engineering Science and Technology,Jinzhong Shanxi 030600,China)
出处
《信息与电脑》
2023年第18期49-51,共3页
Information & Computer
关键词
图卷积神经网络
面部动作
单元检测
graph convolutional neural network
facial movements
unit detection