期刊文献+

H-ResGAN在智能反射面辅助通信系统中的信道估计 被引量:1

Hybrid loss based residual generative adversarial network for channel estimation in intelligent reflecting surface assisted communication systems
下载PDF
导出
摘要 智能反射面(intelligent reflecting surface,IRS)辅助通信系统的信道维度较高,现有的信道估计方法须使用大量导频才能得到准确的信道矩阵.针对这一问题,提出了一种基于混合损失的残差生成对抗网络(hybrid loss based residual generative adversarial network,H-ResGAN)模型.H-ResGAN使用多个残差块来加深网络,可以充分提取信道特征,减缓梯度消失问题.同时,采用条件最小二乘损失和L1损失相结合的混合损失作为目标函数来提高训练的稳定性.仿真实验证明:H-ResGAN对环境噪声更具鲁棒性,估计误差显著低于传统方法;与传统的估计算法相比,H-ResGAN仅须发送少量导频就能获得准确的估计结果. Intelligent reflecting surface(IRS)aided communication systems have high channel dimensionality and the existing channel estimation methods require a lot of pilots to obtain an accurate channel matrix.To address this problem,a hybrid loss based residual generative adversarial network(H-ResGAN)model is proposed.H-ResGAN uses multiple residual blocks to deepen the network,which can fully extract channel features and mitigate the gradient disappearance problem.At the same time,a hybrid loss combining least squares loss and L1 loss is adopted as the objective function to improve the stability of the training.Simulation experiments demonstrate that H-ResGAN is more robust to environmental noise and has significantly lower estimation errors than traditional methods.In addition,HResGAN can obtain accurate estimation results by sending only few pilots compared to traditional estimation algorithms.
作者 张欣怡 江沸菠 彭于波 董莉 ZHANG Xinyi;JIANG Feibo;PENG Yubo;DONG Li(College of Information Science and Engineering,Hunan Normal University,Changsha 410000,China;School of Computer Science,Hunan University of Technology and Business,Changsha 410000,China)
出处 《电波科学学报》 CSCD 北大核心 2023年第6期1048-1056,共9页 Chinese Journal of Radio Science
基金 国家自然科学基金(41874148,41904127,41604117)。
关键词 智能反射面(IRS) 信道估计 毫米波 基于混合损失的残差生成对抗网络(H-ResGAN) 混合损失 intelligent reflecting surface(IRS) channel estimation millimeter wave hybrid loss based residual generative adversarial networks(H-ResGAN) hybrid loss
  • 相关文献

参考文献4

二级参考文献44

  • 1王兆瑞,刘亮,李航,崔曙光.面向6G物联网的智能反射表面设计[J].物联网学报,2020,4(2):84-95. 被引量:14
  • 2张振川.OFDM系统技术研究及其性能分析[J].东北大学学报(自然科学版),2007,28(2):201-204. 被引量:6
  • 3van Nee R, Awater G, Morikura M, et al. New high-rate wireless LAN standards [ J ]. IEEE Transactions on Communication, 1999,37 (12) : 82 - 88.
  • 4Hori S, Mizoguchi M, Sakata T, et al. A new branch metric generation method for soft-decision Viterbi decoding in coded OFDM-SDM systems employing MLD over frequency selective MIMO channels [ J ]. IEICE Transactions on Fundanventals, 2002, E85-A(7) : 1675 - 1684.
  • 5Zelst A V, Schenk T C W. Implementation of a MIMO OFDM-based wireless LAN systemIJ ]. IEEE Transactions on Signal Process, 2004,52 (2) : 483 - 494.
  • 6Ogawa Y, Nishio Y, Nishimura T, et al. Channel estimation and signal detection for space division multiplexing in a MIMO-OFDM system [J ]. IEICE Transactions on Communication, 2005, E8-B( 1 ) : 10 - 18.
  • 7Hou X, Xu Y, Zheng B, et al. A time-domain approach for channel estimation in MIMO-OFDM-based wireless networks [J ]. IEICE Transaction s on Communication, 2005, E8-B (1):3-9.
  • 8Manton J H. Optimal training sequences and pilot tones for OFDM systems[J ]. IEEE Transactions on Communications Letters, 2001,5(4) : 151 - 153.
  • 9Minn H, Al-Dhahir N. Optimal training signals for MIMO OFDM channel estimation [ J ]. IEEE Transactions on Wireless Communications, 2006,5(5) : 1158 - 1168.
  • 10Barhumi I, Leus G, Moonen M. Optimal training design for MIMOOFDM systems in mobile wireless channels [ J ]. IEEE Transactions on Signal Processing, 2003, 5 ( 6 ) : 1615 - 1624.

共引文献55

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部