期刊文献+

Perceptual Optimization for Point-Based Point Cloud Rendering

下载PDF
导出
摘要 Point-based rendering is a common method widely used in point cloud rendering.It realizes rendering by turning the points into the base geometry.The critical step in point-based rendering is to set an appropriate rendering radius for the base geometry,usually calculated using the average Euclidean distance of the N nearest neighboring points to the rendered point.This method effectively reduces the appearance of empty spaces between points in rendering.However,it also causes the problem that the rendering radius of outlier points far away from the central region of the point cloud sequence could be large,which impacts the perceptual quality.To solve the above problem,we propose an algorithm for point-based point cloud rendering through outlier detection to optimize the perceptual quality of rendering.The algorithm determines whether the detected points are outliers using a combination of local and global geometric features.For the detected outliers,the minimum radius is used for rendering.We examine the performance of the proposed method in terms of both objective quality and perceptual quality.The experimental results show that the peak signal-to-noise ratio(PSNR)of the point cloud sequences is improved under all geometric quantization,and the PSNR improvement ratio is more evident in dense point clouds.Specifically,the PSNR of the point cloud sequences is improved by 3.6%on average compared with the original algorithm.The proposed method significantly improves the perceptual quality of the rendered point clouds and the results of ablation studies prove the feasibility and effectiveness of the proposed method.
出处 《ZTE Communications》 2023年第4期47-53,共7页 中兴通讯技术(英文版)
  • 相关文献

参考文献2

二级参考文献63

  • 1文俊浩,吴中福,吴红艳.空间孤立点检测[J].计算机科学,2006,33(5):186-187. 被引量:5
  • 2杨宜东,孙志挥,朱玉全,杨明,张柏礼.基于动态网格的数据流离群点快速检测算法[J].软件学报,2006,17(8):1796-1803. 被引量:22
  • 3汪加才,张金城,江效尧.一种有效的可视化孤立点发现与预测新途径[J].计算机科学,2007,34(6):200-203. 被引量:5
  • 4薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 5赵科平,周水庚,关佶红,等.一种新的离群数据对象发现方法∥中国人工智能学会第10届全国学术年会论文集.北京:北京邮电大学出版社,2003.
  • 6Aggarwal C C, Yu P. Outlier detection for high dimensional dataft Proc. of the ACM SIGMOD International Conference on Management of Data. Santa Barbara, 2001:37-47
  • 7Angiulli F, Pizzuti C. Outlier Mining in Large High Dimensional Data Sets. IEEE Trans. Knowledge and Data Eng. , 2005, 2 (17) :203-215
  • 8Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outlier. IEEE Trans. Knowledge and Data Eng. , 2006, 2(18): 145-160
  • 9Aggarwal C C. Re - designing Distance Functions and Distance - based Applications for High Dimensional Data. SIGMOD Record Date, 2001, 30(1):13-18
  • 10Yu Dantong, Gholamhosein S, Zhang Aidong. FindOut: Finding Outliers in Very Large Datasets. Knowledge and Information Systems, 2002,4 (4) : 387-412

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部