期刊文献+

一类半线性椭圆型方程解的存在性与渐近性

Existence and Gradualism of Solutions for a Class of Semilinear Elliptic Equations
下载PDF
导出
摘要 本文研究了一类带有Hardy项的半线性椭圆型方程,利用上下解方法和比较原则,获得了该问题最大解和最小解的存在性以及正解在原点附近的渐近估计式。 In this paper,a class of semilinear elliptic equations with Hardy-type terms are concerned.Using the upper and lower solution method and comparison principle,the existence of the maximum and minimum solutions and the asymptotic estimates of the positive solutions near the origin are obtained.
作者 刘珊珊 王琳琳 樊永红 LIU Shanshan;WANG Linlin;FAN Yonghong(School of Mathematics and Statistics Science,Ludong University,Yantai 264039,China)
出处 《鲁东大学学报(自然科学版)》 2024年第1期76-80,共5页 Journal of Ludong University:Natural Science Edition
基金 国家自然科学基金(112012313) 山东省自然科学基金(ZR2015AM026) 山东省高校科技发展计划(J15LI07)。
关键词 上下解方法 比较原则 解的存在性 渐近性 upper and lower solution method comparison principle existence of solutions asymptotic behavior
  • 相关文献

参考文献2

二级参考文献12

  • 1Li Yi,Ni Weiming.On conformal scalar curvature equations in Rn[J].Duke Math.1988,57 (3):895-924.
  • 2Lui Yi,Li Yi,Deng Yibin.Separation property of solutions for a semilinear elliptic equation[J].J.Diff.Eqns.2000,163(2):381-406.
  • 3Bernald G.An inhomogeneous semilinear equation in entire space[J].J.Diff.Eqns.1996,125(2):184-214.
  • 4Bae S,Ni Weiming.Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on Rn[J].Math.Ann.2001,320(1):191-210.
  • 5Ni Weiming.On the elliptic equation △u+K (x)u^n+2/n-2= 0,its generalizations and applications in geomtry[J].Indiana Univ.Math.J.1982,31 (3):493-520.
  • 6Bae S,Chang Tongkeun,Pahk D H.Infinte multiplicity of positive entire solutions of a semilinear elliptic equation[J].J.Diff.Eqns.2002,181 (2):367-387.
  • 7Li Yi.Asymptotic behavior of positive solutions of equation△u+K(x)up =0 in Rn[J].J.Diff.Eqns.1992,95 (1):304-330.
  • 8Ding Weiyong,Ni Weiming.On the elliptic equation△u+K(x)un+2n-2 =0 and related topics[J].Duke Math.J.1995,52(1):485-506.
  • 9Ni Weiming,Yotsutani S.Semilinear elliptic equations of Matukuma type and related topics[J].Japan J.Appl.Math.1998,5 (2):1-32.
  • 10Gui Changfeng.Positve entire solutions of the equation△u+ f(x,u)= 0[J].J.Diff.Eqns.1992,99(1):245-280

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部