摘要
能见度预测将直接影响交通运输的安全和效率。能见度检测一般需用昂贵的激光能见度仪,但该仪器对团雾检测精度不高,探测的范围很小,维护成本高,从而在无设备区域易出现安全隐患。因此,如何高效的检测能见度是高速管理部门和航空公司十分关注的问题。文章以大数据技术为基础,以预测各种场景中的能见度为最终目的,分别利用测量数据、视频、图像、时间序列四种数据进行分析和预测,最终得到普适性强、精确度高的最佳方案。实验结果表明模型均达到了较好的表现,为未来机场能见度的人工智能预测系统提供了有益的借鉴。
Visibility prediction will directly affect the safety and efficiency of transportation,and detection often requires an expensive laser visibility meter,which has low detection accuracy for cloud fog,a small detection range,and high maintenance costs with potential safety hazard in equipment-free areas.Therefore,how to efficiently detect visibility is a matter of great concern to high-speed management departments and airlines.Based on big data technology,with the ultimate goal of predicting the visibility in various scenes,using four kinds of data,namely measurement data,video,image,and time series,this paper analyzes,predicts,and finally obtains a universal and high-accuracy solution.The experimental results show that the model has achieved good performance,which lays the foundation for the future artificial intelligence prediction system of airport visibility.
作者
王新龙
梁艳玲
刘雪宇
Wang Xinlong;Liang Yanling;Liu Xueyu(Department of Computer Science,Changzhi University,Changzhi Shanxi 046011;Depertment of Computer Science,Shanxi Vocational College of Tourism,Taiyuan Shanxi 030031;College of Computer Science and Technology(College of Data Science),Taiyuan University of Technology,Taiyuan Shanxi 030024)
出处
《长治学院学报》
2023年第5期25-32,共8页
Journal of Changzhi University
基金
长治学院“1331工程”人才培养质量提升计划资助项目。
关键词
卷积神经网络
能见度预测
AMOS观测
机场监控视频
convolutional neural network
visibility prediction
AMOS observation
airport surveillance video