期刊文献+

利用双通道激光雷达验证低信噪比反演算法

Verification of low SNR inversion algorithm by dual-channel LiDAR
下载PDF
导出
摘要 针对相干测风激光雷达(LiDAR)在低信噪比(SNR)下反演算法的可靠性和精度难以验证的问题,搭建了一种双通道的脉冲相干测风LiDAR系统,可以同时获取高、低SNR的2组数据,并使用高SNR通道的结果作为真值,比较利用不同的算法在低SNR通道进行矢量风速估计的结果。该系统避免了使用其他观测设备作为真值时难以配准或观测目标不统一的问题。本文研究利用雷达获取的观测结果验证了各个算法的有效性,并在各个算法间进行了横向对比。最终,依据各个算法的性能表现和计算复杂度,指明了各个算法具有优势的使用场景。该结果对于充分利用现有系统、使用新算法提高低SNR下的数据获取效率,或在指定探测指标的前提下降低激光能量等硬件要求、实现系统小型化有一定意义。 Aiming at the problem that it is difficult to verify the reliability and precision of the inversion algorithm of coherent wind LiDAR in low signal-to-noise ratio(SNR),a dual-channel pulsed coherent wind LiDAR system is built,which can achieve two groups of data of high and low SNR at the same time.The results of high SNR channel are taken as the true value to compare and use the results of vector wind speed estimation of different algorithm in low SNR channel.This system avoids problems of difficulty of registration or disunity of targets observation when taking other observation devices as ture values.The validity of each algonith is verified by the LiDAR observation results.The horizontal contrast are carried out between algorithms.Based on the performance and computational complexity of each algorithm,the advantages usage scenarios are identified.It is significant for making full use of existing systems,employing new algorithm to improve data acquisition efficiency in low SNR or reducing hardware requirements such as laser energy and realizing system miniaturization under certain detection specifications.
作者 林瑞奇 郭磐 陈和 陈思颖 张寅超 郑熠泽 LIN Ruiqi;GUO Pan;CHEN He;CHEN Siying;ZHANG Yinchao;ZHENG Yize(School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China)
出处 《传感器与微系统》 CSCD 北大核心 2024年第1期148-152,共5页 Transducer and Microsystem Technologies
基金 中国博士后科学基金资助项目(2020M680369)。
关键词 脉冲相干测风激光雷达 双通道 矢量风速估计 低信噪比 pulsed coherent wind LiDAR dual-channel vector wind speed estimation low signal-to-noise ratio
  • 相关文献

参考文献2

二级参考文献6

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部