期刊文献+

基于FSR嵌入的智能泡沫在气动夹爪的应用 被引量:1

Application of smart foam with embedded FSR in pneumatic gripper
下载PDF
导出
摘要 如何控制工业夹爪对易损物体的夹持力是一件具有挑战的任务,通常是利用有着力传感器的电动夹爪进行反馈控制,但这种方法昂贵且额外增加了夹爪的复杂程度。基于直书写3D打印,设计了一种内嵌力敏电阻器(FSR)的智能硅橡胶泡沫,安装在气动夹爪的指尖,不仅能监测夹持状态,还能在气压超过阈值后一定范围内,保持夹持力的恒定,以保护物体。实验结果表明:智能泡沫在4~12 N的工作范围内,误差不超过1.5N。当气压在450~560kPa范围内,能维持夹持力约14.6N。 Controlling the gripping force of industrial gripper on fragile objects is a challenging task,usually force sensors with electrical gripper is used for feedback control,but this method is expensive and adds additional complexity to the gripper.A smart silicone rubber foam with an embedded force senstive resistor(FSR)is designed based on direct ink writing 3D printing and mounted on the fingertips of pneumatic gripper to not only monitor the gripping state but also to maintain a constant gripping force to protect the object within a certain range after the air pressure exceeds a threshold.Experimental results show that the smart foam operates within a range of 4~12 N with an error of no more than 1.5 N.When the air pressure is in the range of 450~560 kPa,the gripping force is maintained at approximately 14.6 N.
作者 吴凡 李东亚 杨文振 徐嘉文 刘禹 芦艾 WU Fan;LI Dongya;YANG Wenzhen;XU Jiawen;LIU Yu;LU Ai(School of Mechanical Engineering,Jiangnan University,Wuxi 214122,China;Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang 621900,China)
出处 《传感器与微系统》 CSCD 北大核心 2024年第1期165-168,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(51875253)。
关键词 直书写 气动夹爪 硅橡胶 应力平台区 恒力 力敏电阻器 direct ink writing pneumatic gripper silicone rubber stress plateau constant force force sensitive resistor(FSR)
  • 相关文献

参考文献3

二级参考文献25

  • 1金观昌,张军,张建中,孙超.一种新型人足底压力分布测量系统及其应用[J].生物医学工程学杂志,2005,22(1):133-136. 被引量:17
  • 2王爱红,李家兰,许樟荣,王玉珍,刘彧.2型糖尿病患者的足底压力研究[J].中华内分泌代谢杂志,2005,21(6):500-501. 被引量:42
  • 3Mobasser F, Hashtrudi-Zaad K. Hand force estimation using electromyography signals [ C ]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005:2631 - 2636.
  • 4Shinohara M ,Li Sheng, Kang Ning,et al. Effects of age and gender on finger coordination in MVC and submaximal force matching tasks[ R]. Journal of Applied Physiology,2003,94:259 -270.
  • 5Duque J, Masset D, Malchaire J. Evaluation of handgrip force from EMG measurements [ J ]. Applied Ergonomics, 1995,26 : 61 -66.
  • 6Peleg D, Braiman E, Yom-Tov E, et al. Classification of finger ac- tivation for use in a robotic prosthesis arm[ J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10 ( 4 ) : 290 -293.
  • 7Danion F, Latash M L, Sheng B L. Finger interactions studied with transcranial magnetic stimulation during muhi-finger force production tasks[ J]. Clinical Neurophysiology,2003,114 : 1445 -1455.
  • 8Sheng L, Latash M L, Zatsiorsky V M. Effects of motor imagery on finger force responses to transcranial magnetic stimulation [ J ]. Cognitive Brain Research ,2004,20:273 -280.
  • 9JAS K,Fuchs A,Lancaster R, et al. Dynamic cortical activity in the human brain reveals motor equivalence [ J ]. Nature,1998,392 ( 6678 ) : 814 -818.
  • 10Boonstra T W, Clairbois H E, Daffertshofer A, et al. MEG-compatible force sensor [ J ]. Journal of Neuroscience Methods, 2005, 144 : 193 -196.

共引文献3

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部