期刊文献+

学生议论文中的比喻论证作用分析

Analysis on Argumentative Functions of Figurative Languages in Student Essays
下载PDF
导出
摘要 在议论文中,比喻不仅是一种修辞技巧,也是一种重要的论证方式。该文提出结合比喻识别和论辩挖掘技术自动分析议论文中的比喻及其论证作用。该文构建了一个数据集,标注了约1200篇学生议论文中的比喻句、论辩角色及论辩质量等级,分析了比喻与论点、论据、阐释和其他论辩角色的作用方式以及比喻运用与篇章质量的关系。该文发现作为常见的修辞手段,比喻句的数量与论辩质量的相关性较弱,但比喻句作为论点时与论辩质量的相关性要强于作为其他论辩角色。此外,该文进一步标注了比喻论点类型以描述比喻的论证作用,包括事实、价值和策略,发现比喻论点的作用主要是传递价值与提出策略。通过比较两类比喻论点类型识别方法,发现基于精调预训练语言模型的方法优于基于提示学习的方法。最后,该文构建了一个集成比喻识别、论辩角色识别与论点类型分类的流水线系统,实验结果显示,该任务具有一定的实用性和挑战性。该研究对于作文自动评分与风格化的论点生成具有很好的应用前景和潜力。 In argumentative essays,metaphor is not only a rhetorical skill,but also an important argumentation strategy.We propose an automatic analysis approach to identify metaphors and their argumentative functions in argumentative essays by combining metaphor recognition and argument mining techniques.We construct a dataset with annotations for metaphorical sentences,argumentative roles,and argumentative quality levels in 1,200 argumentative essays by students.We analyze how metaphors function in relation to argumentative elements such as claims,evidence,reasoning,and other argumentative roles,as well as how the use of metaphors relates to discourse quality.Our findings suggest that while the quantity of metaphorical sentences has a weak correlation with argumentative quality,the correlation becomes stronger when the metaphorical sentences serve as claims.Furthermore,we annotate the types of metaphorical claims according to their argumentative functions,including facts,values,and strategies.The results show that the main function of metaphorical claims is to convey values and propose strategies.We compare two approaches to identify the types of metaphorical claims and find that the approach based on fine-tuning pre-trained language models performs better than the prompt-based approach.Finally,we construct a pipeline system that integrates metaphor recognition,argumentative role recognition,and argumentative claim type classification.The experimental results show that this task is challenging.This research has promising prospects and potential in the realms of automated essay scoring and the generation of stylized arguments.
作者 武阗阗 宋子尧 韩旭 程苗苗 巩捷甫 王士进 宋巍 WU Tiantian;SONG Ziyao;HAN Xu;CHENG Miaomiao;GONG Jiefu;WANG Shijin;SONG Wei(College of Information Engineering and Academy for Multidisciplinary Studies,Capital Normal University,Beijing 100056,China;AI Research,iFLYTEK,Hefei,Anhui 230088,China;State Key Laboratory of Cognitive Intelligence,Hefei,Anhui 230088,China)
出处 《中文信息学报》 CSCD 北大核心 2023年第10期158-166,共9页 Journal of Chinese Information Processing
基金 国家重点研究与发展计划专项课题(2022YFC3303504) 国家自然科学基金(61876113) 北京市教育委员会科技计划项目(KM202010028004)。
关键词 比喻论证 论辩挖掘 大语言模型 figurative argument argument mining large language model
  • 相关文献

参考文献2

二级参考文献5

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部