期刊文献+

漂浮基机械臂系统耦合动力学与解耦控制方法

Coupling Dynamics and Coordinated Control Method of Space Floating Manipulator System
下载PDF
导出
摘要 在执行空间任务过程中,漂浮基机械臂系统内部的动力学耦合现象使得基体姿态调整和机械臂末端定位与控制问题变得更加复杂。综合考虑多种空间漂浮基机械臂系统共性特征,关注机械臂与基体耦合规律,建立统一的耦合动力学模型,并利用整个系统的非完整性特征和耦合特点,对特定系统设计解耦控制规律。通过控制机械臂关节主动运动实现基体位姿可控和机械臂末端任务不受制约的目的。结果表明,通过合理设置控制参数,在解空间存在的情况下,能够达到漂浮基体与机械臂末端协调运动的目的。 In the process of space task,the dynamic coupling phenomenon in the floating base manipulator system makes the adjustment of the base posture and the positioning and control of the end of the manipulator more complex.In this paper,considering the common characteristics of various space-based manipulator systems,we focus on the coupling law between the manipulator and the floating base,establish a unified coupling dynamic model,and utilize the non-integrity and coupling characteristics of the whole system to design the coordinated control law for a specific system.Then,by controlling the active motion of the joint of the manipulator,the pose of the base can be controlled and the task at the end of the manipulator can be free.Finally,a simulation experiment is set up to verify the effectiveness of the proposed method.The results show that the coordinated motion of the floating base and the end of the manipulator can be achieved by reasonably setting the control parameters in the presence of solution space.
作者 陈正仓 贾峰 CHEN Zhengcang;JIA Feng(School of Construction Machinery,Chang'an University,Xi'an 710064,China)
出处 《机械科学与技术》 CSCD 北大核心 2023年第12期1977-1985,共9页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(52275005,52105085) 陕西省自然科学基金项目(2022JQ-342)。
关键词 耦合动力学 漂浮基体 机械臂 控制 仿真 coupling dynamics floating base manipulator cooperative control simulation
  • 相关文献

参考文献8

二级参考文献57

  • 1姜春福,李庆翠,李萍.基于神经网络的机器人运动模型辨识及实验验证[J].应用基础与工程科学学报,2006,14(1):144-151. 被引量:5
  • 2孟昭军,孙昌志,安跃军.基于时间延迟状态反馈精确线性化的PMSM混沌反控制[J].电工技术学报,2007,22(3):27-31. 被引量:15
  • 3宋运忠,赵光宙,齐冬莲,姚明海.混沌化控制综述[J].浙江工业大学学报,2007,35(3):313-319. 被引量:4
  • 4Bosse A B, Barnds W J, Brown M A, et al. SUMO: Space- craft for the universal modification of orbits[C]//Proceedings of SPIE, vol.5419. Bellingham, USA: SPIE, 2004: 36-46.
  • 5Kelm B E, Angielski J A, Butcher S T, et al. FREND: Pushing the envelope of space robotics[J]. Space Research and Satellite Technology, 2008: 239-241.
  • 6Phoenix[EB/OL]. 2012.8. http://www.darpa.mil/Our-Work/ TTO/Programs/Phoenix.aspx.
  • 7Abiko S, Hirzinger G. On-line parameter adaptation for a mo- mentum control in the post-grasping of a tumbling target with model uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2007: 847-852.
  • 8Ma O, Dang H, Pham K. On-orbit identification of inertia prop- erties of spacecraft using a robotic arm[J]. Journal of Guidance, Control and Dynamics, 2008, 31(6): 1761-1771.
  • 9Murotsu Y, Tsujio S, Senda K, et al. System identification and resolved acceleration control of space robots by using experi- mental system[C]//IEEE/RSJ International Workshop on Intel- ligent Robots and System. Piscataway, USA: 1EEE, 1991:1669- 1674.
  • 10Murotsu Y, Senda K, Ozaki M, et al. Parameter identification of unknown object handled by free-flying space robot[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3): 488-494.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部