期刊文献+

基于AUC的支持向量机分类方法及应用研究 被引量:1

Research on classification method and application of support vector machine based on AUC
下载PDF
导出
摘要 支持向量机(SVM)已经成为药物构效关系数据分析的一种常用统计方法,但其存在变量子集选择问题,且大量的冗余变量还可能影响SVM模型的预测精度,因此需要借助变量筛选来实现降维.本文提出了一种新的基于受试者工作特征曲线下面积(AUC)的支持向量机分类方法(AUC-SVM).首先,计算出变量的AUC值;其次,利用AUC值和前向选择算法选择最具信息量的变量子集,并剔除数据中无关和冗余的变量;最后,以AUC作为提取变量重要性的标准,通过真实的药物构效关系数据集来评估AUC-SVM性能,并与传统SVM方法相比较.实证结果表明,AUC-SVM算法能明显提高分类预测性能. Support vector machine(SVM)has become a common statistical method for drug structure-activity relationship data analysis,but it has the problem of variable subset selection,and a large number of redundant variables may affect the prediction accuracy of SVM model,so it is necessary to reduce dimension with the help of variable screening.This paper proposes a new support vector machine classification method(AUC-SVM)based on the area under the subject working characteristic curve(AUC).Firstly,the AUC value of the variable is calculated;secondly,the variable subset with the most information is selected by using the AUC value and the forward selection algorithm,and the irrelevant and redundant variables in the data are eliminated;finally,taking AUC as the criterion for extracting the importance of variables,the AUC-SVM performance is evaluated through the real drug structure-activity relationship data set and compared with the traditional SVM method.The empirical results show that AUC-SVM algorithm can obviously improve the performance of classification prediction.
作者 刘伟平 黄晨浩 LIU Weiping;HUANG Chenhao(Library,Hunan City University,Yiyang,Hunan 413000,China;School of Mathematics and Computational Science,Xiangtan University,Xiangtan,Hunan 411105,China)
出处 《湖南城市学院学报(自然科学版)》 CAS 2023年第6期69-73,共5页 Journal of Hunan City University:Natural Science
基金 湖南省教育厅科研项目(20A086)。
关键词 构效关系 支持向量机 AUC 变量筛选 structure-activity relationship support vector machine AUC variable screening
  • 相关文献

参考文献2

二级参考文献22

  • 1周晓飞,杨静宇,姜文瀚.核最近邻凸包分类算法[J].中国图象图形学报,2007,12(7):1209-1213. 被引量:6
  • 2Bing NIU,Wen-cong LU,Shan-sheng YANG,Yu-dong CAI,Guo-zheng LI.Support vector machine for SAR/QSAR of phenethyl-amines[J].Acta Pharmacologica Sinica,2007,28(7):1075-1086. 被引量:2
  • 3Yu K, Ji L, Zhang X G. Kernel nearest-neighbor algorithm. Neural Processing Letters, 2002, 15(2): 147-156.
  • 4Amari Shun-ichi, Nagaoka H. Methods of Information Geometry (Translations of Mathematical Monographs). New Orleans: American Mathematical Society, 2000.
  • 5Torkkola K. Feature extraction by non-parametric mutual information maximization. The Journal of Machine Learning Research, 2003, 3:1415-1438.
  • 6Zhang Y, Zhou Z H. Non-metric label propagation. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA: Morgan Kaufmann Publishers, 2009. 1357-1362.
  • 7Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research, 2002, 2:265-292.
  • 8UCI machine learning repository [Online], available: http://archive.ics.uci.edu/ml/, March 10, 2009.
  • 9Face data [Online], available: http://www.uk.research.att. com/facedatabase.html, March 10, 2009.
  • 10LeCun Y, Cortes C. Mnist data [Online], available: http://yann.lecun.com/exdb/mnist/, March 10, 2009.

共引文献17

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部