期刊文献+

面向智能交通的大数据实时分析技术

Big Data Real-time Analysis Technology for Intelligent Transportation
下载PDF
导出
摘要 文中研究了基于改进马尔可夫链的交通流量预测方法,旨在利用大数据实时分析技术实现智能交通。首先,指出了交通流量预测在智能交通系统中的重要性和面临的挑战。随后,详细阐述了高阶多元马尔可夫链模型的理论基础,包括马尔可夫链的概念和高阶模型的扩展,从而提出了改进马尔可夫链的交通流量预测方法的总体架构。在此基础上,利用METR-LA数据集进行实验分析,对数据进行预处理和模型训练,并进行模型评估和数据分析。实验结果表明,改进后的马尔可夫链模型在交通流量预测方面具有一定的准确性和实用性。 This paper studies the traffic flow prediction method based on improved Markov chain,aiming to use big data real-time analysis technology implementation of intelligent transportation.First,the importance and challenges of traffic flow prediction in intelligent transportation system are pointed out.Then,the theoretical basis of the higher-order multivariate Markov chain model is elaborated,including the concept of Markov chain and the extension of the higher-order model,thus the overall architecture of the improved Markov chain traffic flow prediction method is proposed.On this basis,the METR-LA dataset is used for experimental analysis,the data is preprocessed and model trained,and model evaluation and data analytics are carried out.The experimental results show that the improved Markov chain model has certain accuracy and practicality in traffic flow prediction.
作者 王少煜 WANG Shaoyu(Yentai Big Data Cnter,Yatni,Shandong 2600Chine)
出处 《移动信息》 2023年第12期189-191,共3页 MOBILE INFORMATION
关键词 智能交通 大数据分析 实时分析 马尔可夫链 Intelligent transportation Big data analysis Real time analysis Markov chain
  • 相关文献

参考文献3

二级参考文献52

  • 1张启明.灰色马尔可夫预测模型及在地震预报中的应用[J].地震学刊,1994,14(1):25-29. 被引量:11
  • 2Gore A. The digital earth: Understanding our planet in the 21st century[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(5): 528.
  • 3Palmisano S. A smarter planet: The next leadership agenda[R]. New York: IBM, 2008.
  • 4Department for Culture, Media and Sport, Department for Business, Innovation and Skills. Digital Britain final report[R]. London: Office of Public Sector Information, 2009.
  • 5郭慧鹏. 智慧城市:应用日渐丰富多彩[N]. 中国信息化周报, 2013-12-30028.
  • 6Frankel F, Reid R. Big data: Distilling meaning from data[J]. Nature, 2008, 455(7209): 30-30.
  • 7Los W, Wood J. Dealing with data: Upgrading infrastructure[J]. Science, 2011, 331(6024): 1515-1516.
  • 8Ahas R, Aasa A, Silm S, et al. Daily rhythms of suburban commuters’movements in the tallinn metropolitan area: Case study with mobile positioning data[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(1): 45-54.
  • 9Gentili M, Mirchandani P. Locating sensors on traffic networks: Models, challenges and research opportunities[J]. Transportation Research Part C: Emerging Technologies, 2012, 24: 227-255.
  • 10Bachmann C, Abdulhai B, Roorda M J, et al. A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 33-48.

共引文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部