期刊文献+

一种用于水电站水工建筑物缺陷检测的水下机器人系统设计

Design of an Underwater Robot System for Detecting Defects in Hydraulic Structures at Hydropower Stations
下载PDF
导出
摘要 水电站水工建筑物缺陷检测目前是由观察型机器人或潜水员完成,存在检测手段少、运行受水流影响等问题。对此,文章针对水电站水工建筑物结构及缺陷特点,研制了一套水下检测机器人系统。该系统利用水动力仿真、静水力分析及稳性分析等方法,优化推力和布局布置、外形等选型和设计,解决了本体浮游和履带复合控制模式、不规则坝面吸附技术、多自由度姿态翻转和运动、缺陷位置定位等技术问题;同时,采用自主开发后处理软件,对声光电传感器数据进行融合,完成了缺陷判别与测量以及修补材料方量的估算,软件识别理论误差为7.4%,小于项目的20%误差率要求,解决了缺陷判别与测量和修补材料方量的估算问题,最终实现了机器人在水电站水工建筑物的水平面、斜面坡、直立面及曲面环境下的水下缺陷检查、缺陷定位、缺陷尺寸测量及数据记录收集等水下无人化检测作业的目标。最后,通过水池功能试验,验证了该水下检测机器人系统的可行性。 Current defect detection techniques for hydraulic structures at hydropower stations are conducted by inspection robots or divers,facing challenges such as limited inspection methods and the impact of water currents.In response to this,the paper developes an underwater robot system for inspection tasks based on the structural and defect characteristics of hydraulic buildings in hydropower stations.Using methodologies such as hydrodynamic simulation,and hydrostatic analysis and stability analysis,the system optimizes propulsion and layout structure,shape selection and design,solving problems inherent to body floating and caterpillar track hybrid control modes,adhesive technology for irregular dam surfaces,multi-degree of freedom attitude flipping,movement,and precise location of defects.Furthermore,independently developed post-processing software is used to consolidate data from acousto-optic-electric sensors,ensuring identification of defects,measurement,and estimation of repair material quantities,the theoretical error of software recognition is 7.4%,which is less than the 20%error rate required by the project.This solution overcomes the challenges of defect measurement and estimation of required materials for repairs.Ultimately,the objective is to facilitate autonomous underwater operations including defect inspections,locating defects,dimension measurements,and data acquisition for robots operating on flat,sloping,upright,and curved surfaces of hydraulic structures in hydropower stations.Finally,pool functional test validations have confirmed the feasibility of the proposed underwater detection robot system.
作者 张易 朱俊 袁庆晴 翁叶伟 彭世东 沈维格 ZHANG Yi;ZHU Jun;YUAN Qingqing;WENG Yewei;PENG Shidong;SHEN Weige(China Yangtze Power Co.,Ltd.,Yichang,Hubei 443002,China;CRRC SMD(Shanghai)Ltd.,Shanghai 201306,China)
出处 《控制与信息技术》 2023年第6期92-97,共6页 CONTROL AND INFORMATION TECHNOLOGY
关键词 水下检测机器人 水电站水工建筑物 缺陷检测系统 缺陷识别与定位 遥控水下机器人 underwater detection robot hydraulic structures of hydropower stations defect detection system defect identification and localization remotely operated vehicle(ROV)
  • 相关文献

参考文献3

二级参考文献28

  • 1Silva M F,Machado. J A T. A Survey of Technologies and Applications for Climbing Robots Locomotion and Adhesion: Climbing and Walking Robots//Behnam Mifipour (Ed.), ISBN: 978-953-307-030-8, InTech, 2010.
  • 2GUI Zhongcheng ,et al. A Wall-climbing Welding Robot for Lacge-scale Ferromagnetic Steel-structure Manufacture [C]. In proceedings of The 43rd Interlational Symp:ium on Robotics 0SR2012),Taipei, Taiwan, 2012:162-167.
  • 3Kim S, Asbeck A T, Cutkosky M R,et al. Spinybot II: Climbing hard walls with compliant microspines. In proceedings of Int. Conf. on Advanc:-'d Robotics, 2005: 601-606.
  • 4Lain Tinhm, Xu Yangsheng. Climbing Strategy for a Flexible Tree Climbing Robot-Treebot[J]. IEEE Transactions on Robotics, 2011,27(6):1107-1117.
  • 5Tavakoli M, Marques L, de Almeida A. Self Calibration of Step-by-Step Based Climbing Robots[C], In proceedings of The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,2009:l 1-15.
  • 6Suzumori K, Miyagawa T, Kimura M, et aI. Micro inspection robot for 1-in pipes[J], IEEE/ASME Transactions on Meehatmnics, 1999,4( 3): 286-292.
  • 7http://www.robotic.di:s.unict.it/mbots/mbinspec/mbinspec.htm.
  • 8Viegas M C, e! al. OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures[J], Robotics and Autonomous System.s, 20 13.http'.//dx.doi.org/10.1016/j.mbot.
  • 9Wu M, Pen G, Zliang T, et al. Design and Optimal Reseamh ofa Non-Cantact Adjustable Magnetic Adhesion Mechanism for a WaU-Climbing Welding Robot[J], International Journal of Advanced Robotic Systems,2013, 10 (63): 1-9.
  • 10Schoeneich P, et al. TRIPILLAR: a miniature maglefic caterpillar climbing robot with plane transition ability[J]. Robotica,2011, 29: 1075-1081.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部