期刊文献+

基于改进多任务学习网络的零样本故障诊断

Zero-Shot Fault Diagnosis Based on Improved Multi-task Learning Network
下载PDF
导出
摘要 多任务学习网络结构和参数冗余、网络规模过大,导致网络实时性差的问题;无法获取元件的部分或者全部故障类型样本,导致零样本问题。针对上述问题,提出一种基于元学习优化的轻量化多任务学习网络。为了提高实时性,利用MobileNetV3轻量化网络构建具有多个子任务诊断网络的轻量化多任务学习网络模型;研究了跨元件零样本问题,利用模型无关(MAML)元学习方法,对轻量化多任务学习网络的训练方式进行优化,构建基于元学习优化的轻量化多任务学习网络;最后,从不同微调步数和测试任务数角度,测试了所提网络的诊断性能。通过齿轮和轴承多元件的实测故障分析可知,所提方法可以实时高精度地解决多任务故障诊断问题和跨元件零样本问题。 The parameters redundancy,complex structure and large-scale of the multi-task learning(MTL)network lead to poor real-time performance;unable to obtain some or all kinds of fault samples of the component results in a zero-shot problem.Ai-ming at the above problems,a lightweight MTL network optimized by meta-learning was proposed.MobileNetV3 lightweight network was used to construct the lightweight MTL network that has multiple sub-task networks for improving the real-time performance.The zero-shot problem based on across-components was studied,model-agnostic meta-learning(MAML)was applied to optimize the training mechanism of the lightweight MTL network,the lightweight MTL network optimized by MAML was constructed.Finally,the fault diagnosis performance of the proposed network was tested from the perspective of different fine-tuning steps and testing tasks.Based on the measured faults of multiple components of the gear and rolling bearing,it can be known that the proposed method can solve the problem of multi-task fault diagnosis and cross-component zero-sample in real-time and high accuracy.
作者 曾魁魁 郑直 姜万录 冯立艳 ZENG Kuikui;ZHENG Zhi;JIANG Wanlu;FENG Liyan(College of Mechanical Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China;Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University,Qinhuangdao Hebei 066004,China;Key Laboratory of Advanced Forging&Stamping Technology and Science,Ministry of Education of China,Yanshan University,Qinhuangdao Hebei 066004,China)
出处 《机床与液压》 北大核心 2023年第23期218-224,共7页 Machine Tool & Hydraulics
基金 河北省自然科学基金资助项目(E2022209086) 国家自然科学基金项目(52275067) 河北省高层次人才项目(B2020003033) 唐山市科技创新团队培养计划项目(21130208D) 河北省科技重大专项项目(22282203Z)。
关键词 多任务学习 元学习 轻量化 零样本 故障诊断 Multi-task learning Meta-learning Lightweight Zero-shot Fault diagnosis
  • 相关文献

参考文献4

二级参考文献17

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部