摘要
在研究七阶非线性薛定谔方程的调制不稳定性的基础上,利用谱问题的非线性化和达布变换的方法,构造了七阶非线性薛定谔方程在雅可比椭圆函数dn和cn背景上的两类不规则的周期怪波解。
In the paper,on the basis of investigating the modulation instability(MI)of the seventh-order nonlinear Schrödinger(NLS)equation,two kinds of rogue periodic waves solutions on the background of the Jacobian elliptic functions dn and cn for the seventh-order NLS equation are constructed through approaches of the nonlinearization of spectral problem and Darboux transformation(DT).
作者
姜冬竹
扎其劳
JIANG Dongzhu;Zhaqilao(College of Mathematics Science,Inner Mongolia Normal University,Hohhot 010022,China;Inner Mongolia Center for Applied Mathematics,Hohhot 010022,China;Key Laboratory of Infinite Dimensional Hamiltonian System and Its Algorithm Application(Inner Mongolia Normal University),Ministry of Education,Hohhot 010022,China)
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2023年第6期606-615,共10页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(12361052)
内蒙古自治区自然科学基金资助项目(2020LH01010,2022ZD05)
内蒙古自治区高等学校创新团队发展计划支持资助项(NMGIRT2414)
内蒙古自治区研究生科研创新基金资助项目(2022JBXC013,B20231053Z)。
关键词
调制不稳定性
周期怪波解
七阶非线性薛定谔方程
modulation instability
rogue waves on a periodic background
seventh-order NLS equation