期刊文献+

State-of-the-art development about cryogenic technologies to support space-based infrared detection

原文传递
导出
摘要 As a key technology for space-based Earth observation and astronomical exploration,cooled mid-wavelength and long-wavelength Infrared(IR)detection is widely used in national defense,astronomy exploration,medical imaging,environmental monitoring,agricultural and other areas.The performances of IR detectors,including cut-off wavelength,detectivity,sensitivity and temperature resolution,plays a significant role in efficiently observing and tracking the low-temperature far-distance moving targets.Achieving optimal detection performance requires the IR detectors to operate at cryogenic temperatures.The future development of space-based applications relies heavily on the mid-wavelength and long-wavelength IR detection technologies,which should be enabled by the long-life cryogenic refrigeration and high-efficiency energy transportation system operating below 40 K,to support the Earth observation and astronomical detection.However,the efficiency degradation caused by the super low temperature brings tremendous challenges to the life time of cryogenic refrigeration and energy transportation systems.This paper evaluates the influence of cryogenic temperature on the infrared detector performances,reviews the features,development and space applications of cryogenic cooling technologies,as well as the cryogenic energy transportation approaches.Additionally,it analyzes the future development trends and challenges in supporting the space-based IR detection.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期32-52,共21页 中国航空学报(英文版)
基金 the support from the National Basic Research Program of China(No.613322) the Beijing Nova Program,China(No.Z200002121078) the National Natural Science Foundation of China(No.52202506) the Chinese Government Scholarship(CN)(No.201904980001)。
  • 相关文献

参考文献7

二级参考文献49

  • 1Rayner J, Shure M, Toomey W D, et al. Design of a new 1-5.5 m infrared camera for the NASA Infrared Telescope Facility[J]. SPIE, 1993, 1946: 490-501.
  • 2Pritchett G D, Hendrick W R, Moore K D. AEOS radiometer system: a multi-channel imaging radiometer[C]//Proc, of SPIE, 1999, 3701: 206-213.
  • 3AVigil L M, Witte J D, LeVan D P, et al. Sensor suite for the Advanced Electro-Optical System (AEOS) 3.6-m telescope [C]//Proc. ofSPIE, 1996 2819.
  • 4Hodapp W K, Hora J, Graves E, et al. The Gemini Near-lnfrared lmager NIRI[C]//Proc. of SPIE, 2000, 4008:1334-1341.
  • 5Young T T, Hodapp W K, Douglass J, et al. Cryostat Design and Fabrication for the Gemini NIRI lnstrument[C]//Proc, of SPIE, 1998, 3354: 1084-1091.
  • 6Hodapp W K, Jensen B J, Irwin M E, et al. The Gemini near-infrared imager(NIRl). The Astronomical Society of the Pacific, 2003, 115: 1388- 1406.
  • 7Mountain M C, Kurz R, Oschmann M J. The Gemini 8-m telescopes project[C]//Proc, qfSPIE, 1997, 2871: 15-23.
  • 8Dolci M, Straniero O, Di Rico G, et al. AMICA: the NIR/MIR camera for automatic astronomical observations from Dome C, Antarctica[C]//Proc. of SPIE, 2010, 7735: 77353L.
  • 9Straniero O, Dolci M, Valentini A, et al, AMICA: The first camara for near- and mid-infrared astronomical imaging at DOME C[C]//lst ARENA Conference on Astronomy at CONCORDIA, 2007, 25:215-220.
  • 10Bizenberger E Baumeister H, Biichler Costa J, et al. Optical design and cryogenic mounting of the optics for a pyramid wavefront sensor working in the near infrared wavelength range[C]//Proc, of SPIE, 2005, 5962:596227.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部