期刊文献+

气垫炉中铜带材漂浮行为的数值模拟

Numerical simulation on floating behavior of copper strip in air cushion furnace
原文传递
导出
摘要 基于东北大学轧制技术及连轧自动化国家重点实验室中试气垫炉的试验数据和几何模型,采用Ansys Fluent软件构建了气垫炉漂浮仿真模拟平台,分析了气垫炉入口风量、带材漂浮高度、流体温度和喷嘴结构对铜带材漂浮行为的影响。结果表明,带材漂浮高度在H=80~180 mm范围内有利于带材稳定漂浮;温度越高,带材所受压力降低,增大入口风量对压力的提升效果减弱;高温条件下,出现风机功率波动时对带材压力影响较小,有利于带材稳定漂浮;狭缝喷嘴倾斜角度由30°优化为60°有利于改善带材压力分布均匀性,但会降低带材所受压力。 Based on the experimental data and geometric model for the experimental air cushion furnace from the State Key Laboratory of Rolling Technology and Continuous Rolling Automation of Northeastern University, the Ansys Fluent software was used to construct the air cushion furnace floating simulation platform, and the effects of air cushion furnace inlet air volume, strip floating height, fluid temperature and nozzle structure on the copper strip floating behavior were analyzed. The results show that the floating height of the strip is conducive to the stable floating of the strip in the range of H=80-180mm. The higher the temperature, the lower the pressure of the strip, and the increase in the inlet air volume weakens the pressure lifting effect. Under high temperature conditions, the possible fan power fluctuations have little effect on the strip pressure, which is conducive to stable floating of the strip. The optimized inclination angle of the slit nozzle from 30° to 60° is conducive to improving the uniformity of strip pressure distribution, but will reduce the pressure on the strip.
作者 赵鹏 李家栋 李勇 Zhao Peng;Li Jiadong;Li Yong(State Key Laboratory of Rolling Technology and Continuous Rolling Automation,Northeastern University,Shenyang Liaoning 110819,China)
出处 《金属热处理》 CAS CSCD 北大核心 2023年第12期269-276,共8页 Heat Treatment of Metals
基金 山东省重点研发计划(2019JZZY010401) 南宁市科技重大专项(20201041)。
关键词 气垫炉 铜带材 漂浮过程 有限元模拟 喷嘴结构 air cushion furnace copper strip flotation process finite element simulation nozzle structure
  • 相关文献

参考文献3

二级参考文献59

  • 1陈文修,邓孝友,邹波,刘非轼,洪素禧.气垫炉板带材漂浮高度的解析与试验[J].中南矿冶学院学报,1989,20(3):251-259. 被引量:4
  • 2Miller W S, Zhang L,Bohema J, et al. Recent development inaluminum alloys for the automotive industry [J]. Materials Sci-ence and Engineering, 2000,A280: 37-49.
  • 3Hirsch J R. Aluminium in innovative light-weight car design[J].Materials Transactions,2011,52(5) : 818-824.
  • 4Sakurai T. The latest trends in aluminum alloy sheets for automo-tive body panels [J]. Kobelco Technology Review, 2008,28:22-28.
  • 5Kobe S L. Automotive sheet and coils [R]. Shanghai : SanjingCompany, 2008.
  • 6Morita A. Aluminium alloys for automobile applications [J]. Alu-minium Alloys,1998,1 : 25-32.
  • 7Marlen Bertram. Improving sustainability in the transport sector-through weight reduction and the application of aluminum [R].Dalian : International Seminar on the Car with Aluminum, 2007.
  • 8芋濑正行.气垫连续热处理——中外方式[J].轻合金加工技术,1986, 2: 37-43.
  • 9Daniel D, Hoffmann J L. Optimization of 6016 aluminum alloyselection for outer panels[C]//Intemational Body EngineeringConference & Exhibition and Automotive Transportation Tech-nology Congress. Paris: SAE paper,2002.
  • 10Oosterkamp L, Djapic,Ivankovic A, et al. High strain rateproperties of selected aluminum alloys [J]. Materials Scienceand Engineering,2000, A278:225-235.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部