期刊文献+

τ-拟连续偏序集的网式刻画

A characterization ofτ-quasicontinuous posets by nets
下载PDF
导出
摘要 利用cut算子,在偏序集上引入网的拟下极限收敛概念,讨论了它的一些性质,特别地,对任意包含于σ2-拓扑的序相容拓扑τ,证明了:(1)一个偏序集P是τ-拟连续的当且仅当GS-收敛关于拓扑τ是拓扑的;(2)一个交τ-连续偏序集P是τ-拟连续的当且仅当拟下极限收敛关于拓扑τ∨ω(P)是拓扑的。 In this paper,the concept of quasi-liminf convergence was introduced by means of the cut operator.Some properties of quasi-liminf convergence were investigated.Especially,for any ordered compatible topologyτcontained inσ2-topology,it was proved that:(1)A poset P isτ-quasicontinuous iff the GS-convergence is topological in the topologyτ;(2)A meetτ-continuous poset P is aτ-quasicontinuous poset iff the quasi-liminf convergence is topological in the topologyτ∨ω(P).
作者 邓梦其 鄢凯艳 蔡琳 张文锋 DENG Mengqi;YAN Kaiyan;CAI Lin;ZHANG Wenfeng(School of Big Data Science,Jiangxi Science and Technology Normal University,Nanchang 330038,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2023年第6期543-547,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(12261040) 江西省自然科学基金资助项目(20232BAB201007)。
关键词 τ-拟连续偏序集 GS-收敛 拟下极限收敛 τ-quasicontinuous poset GS-convergence quasi-liminf convergence
  • 相关文献

参考文献3

二级参考文献35

  • 1Jin Bo YANG,Mao Kang LUO.Priestley Spaces,Quasi-hyperalgebraic Lattices and Smyth Powerdomains[J].Acta Mathematica Sinica,English Series,2006,22(3):951-958. 被引量:14
  • 2Gierz G, AndLawson J D. Generalized Continuous and Hypercontinuous Lattices [ J ]. Rocky Mountain J Math, 1981 ( 11 ) :271 - 296.
  • 3Gierz G,Hofmann K H,Keimel K,et al. Continuous Lattices and Domains[ M ]. United Kingdom, Cambridge University Press,2003.
  • 4Gierz G, Lawson J D, Stralka A. Quasicontinuous Posets [J]. Houston J Math,1983(9) :191 -208.
  • 5Venugopalan P. Quasicontinuous Posets [ J ]. Semigroup Forum,1990(41 ) :193 -200.
  • 6Venugopalan P. A Generalization of Completely Distributive Lattices [ J ]. Algebra Universalis, 1990 ( 27 ) : 78 - 586.
  • 7Menon V G. Compact Pospaces [ J ]. Comment Math Univ Carolinae, 2003,44 (4): 741 - 744.
  • 8Menon V G. Separating Points in Posets [ J ]. Houston J Math, 1995,21 (2) :283 - 290.
  • 9Raney G N. A Subdirect - union Representation for Completely Distributive Complete Lattices [ J ]. Proc Amer Math Soc,1953(4) :518 -512.
  • 10Hofmann K E. Continuous Posers and Adjoint Sequences [ J ]. Semigroup Forum, 1979 (18) : 173 - 188.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部