摘要
本文提出了一种轴辐式货运航线网络设计的方法。运用聚类分析(K-Means)进行枢纽机场选址,以枢纽机场间多重连接的方式,建立无机场容量限制的轴辐式货运航线网络优化模型,运用枚举法求解最终得到一个较为合理的货运航线网络。其中为提高聚类精度,引入熵权-TOPSIS法对数据进行处理,通过对TOPSIS评价数据进行聚类得到精度较高的聚类结果,实验表明基于熵权-TOPSIS的聚类分析较传统的聚类分析降低了运输成本。
The paper proposes the method of hub-and-spoke cargo route network design.Cluster analysis(K-Means) is used to select hub airports and multiple connections between hub airports are used to establish a hub-and-spoke cargo route network optimization model without airport capacity constraints and enumeration is used to solve the problem to obtain a more reasonable cargo route network.In order to guarantee the clustering accuracy,the entropy weight-TOPSIS method is introduced to process the data and the clustering results with high accuracy are obtained by clustering the TOPSIS evaluation data.The experiments show that the clustering analysis based on entropy weight-TOPSIS reduces the transportation cost compared with the traditional clustering analysis.
作者
朱学松
陈肯
Zhu Xuesong;Chen Ken(Civil Aviation Flight University of China,Guanghan 618307 Sichuan China)
出处
《中国民航飞行学院学报》
2024年第1期5-8,24,共5页
Journal of Civil Aviation Flight University of China
基金
国家重点研发计划项目资助(2021YFF0603904)
中国民用航空局科教项目资助(0252138)。