期刊文献+

线性再生散度模型的极大L_(q)-似然估计的渐近性质

Asymptotic properties of the maximum L_(q)-likelihood estimates in linear reproductive dispersion models
下载PDF
导出
摘要 线性再生散度模型是线性回归模型、广义线性模型和指数线性模型的自然推广,极大L_(q)-似然估计是基于非广义熵的新参数估计方法,是极大似然估计的推广。用极大L_(q)-似然估计研究线性再生散度模型,在一定的条件下,给出了线性再生散度模型的极大L_(q)-似然估计的弱相合性和渐近正态性。最后通过模拟算例表明:随着n的增大参数估计值越接近真值;当q→1时,ML_(q)E的参数估计值接近于MLE的参数估计值。 Linear reproductive dispersion models(LRDMS)are the natural generalization of linear regression models,generalized linear models and exponential linear models.Maximum L_(q)-likelihood estimator(ML_(q)E)is a new parametric estimator based on nonextensive entropy,which is a generalization of maximum likelihood estimation.In this paper,ML_(q)E is used to study LRDM,the weak consistency and asymptotic normality of ML_(q)E of RDLM are obtained under certain assumptions.Finally,it is illustrated by a simulation example:parametric estimator gets closer to the true value with the increasing of n,and the parametric estimator of ML_(q)E is close to the parameter estimate of MLE.
作者 胡宏昌 吴乔艳 HU Hong-chang;WU Qiao-yan(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)
出处 《湖北师范大学学报(自然科学版)》 2023年第4期17-24,共8页 Journal of Hubei Normal University:Natural Science
基金 湖北师范大学“研究生创新科研”立项建设项目(2023Z080)。
关键词 线性再生散度模型 极大L_(q)-似然估计 存在唯一性 弱相合性 渐近正态性 linear reproductive dispersion models maximum L_(q)-likelihood existence and uniqueness weak consistency asymptotic normality
  • 相关文献

参考文献2

二级参考文献19

  • 1Cook,R.D.,Asessment of localinfluence (with discussion), J.Roy.Statist.Soc.Ser.B,1986,48:133~169.
  • 2Pregibon,D.,Logistic regression diagnostics,Ann.Statist.,1981,9:705~724.
  • 3Andersen,E.B.,Diagnostics in categorical dataanalysis,J.Roy.Statist.Soc.Ser.B,1992,54:781~791.
  • 4Williams,D.A.,Generalized linear model diagnostics using the deviance single casedeletion, Appl.Statist.,1987,36;181~191.
  • 5Wei,B.C.,Exponential Family Nonlinear Models,Springer-Verlag,Singapore,1998.
  • 6Cordeiro,G.M.,Paula,G.A.,Estimation,large-sample parametric tests and diagnosticsfor non-exponential family nonlinear models,Comm.Statist.Simulation Comput.,1992,21:149~172.
  • 7Jorgensen,B.,The Theory of Dispersion Models,Chapman & Hall,London,1997.
  • 8Emerson,J.D.,Hoaglin,D.C.,Kempthorne,P.J.,Leverage in least squaresadditive-plus-multiplicative fit for two way tables,J.Amer.Statist.Assoc.,1984,79:329~335.
  • 9Yoshizoe,Y.,Leverage points in nonlinear regressionmodels,J.Japan.Statist.Soc.,1991,21:1~11.
  • 10St.Laurent,R.T.,Cook,R.D.,Leverage and superleverage in nonlinearregression,J.Amer.Statist.Assoc.,1992,87:985~990.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部