期刊文献+

基于多模态多目标果蝇优化的风光燃储微网优化调度

Optimal Scheduling of Wind,Photovoltaic,Gas Turbines and Energy Storage Microgrid Based on Multimodal and Multi-objective Drosophila Optimization
下载PDF
导出
摘要 为了实现风光燃储微电网经济环保优化运行,提出了基于种群分区多模态多目标果蝇优化的微网优化调度算法。引入可平移负荷和可中断负荷响应,建立了以风光燃储微电网的运行经济成本和环境污染成本最小为目标函数的多目标优化模型。模型的求解采用三分区的多策略多模态多目标果蝇优化算法——将果蝇种群分为3个区并引入特殊拥挤距离,自适应地调整收敛性和多样性。与5种其他算法进行对比仿真实验,结果表明,所提出的风光燃储微网优化调度算法在全局最优求解、收敛性、多样性以及所得到的最优解集精度等方面具有明显的优势,能有效降低微电网优化的运行成本和环境成本。 In order to realize the economical and environmental optimization operation of wind,photovoltaic,gas turbines,and energy storage microgrids,a microgrid optimization scheduling algorithm based on population partitioning,multimodal and multi-objective drosophila optimization was proposed.By introducing translational load and interruptible load response,a multi-objective optimization model was established with the minimum economic cost and environmental pollution cost of the wind,photovoltaic,gas turbines and energy storage microgrid as the objective function.The model is solved using 3 partition multi strategy,multimodal,and multi-objective drosophila optimization algorithm,which divides the drosophila population into 3 regions and introduces special crowding distances to adjust convergence and diversity adaptively.Compared with 5 other algorithms,the simulation results show that the proposed optimization scheduling algorithm for wind,photovoltaic,gas turbines and energy storage microgrids has significant advantages in global optimization,convergence and diversity,as well as the accuracy of the obtained optimal solution set.It can effectively reduce the operating and environmental costs of microgrid optimization.
作者 乔珊珊 陶新坤 王福忠 QIAO Shanshan;TAO Xinkun;WANG Fuzhong(School of Intelligent Engineering,Huanghe Jiaotong College,Jiaozuo 454950,China;School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《电力科学与工程》 2023年第12期11-22,共12页 Electric Power Science and Engineering
基金 河南省科技攻关资助项目(232102241028)。
关键词 风光燃储微网 优化调度 果蝇优化算法 多模态多目标 wind,photovoltaic,gas turbines and energy storage microgrid optimal scheduling drosophila optimization algorithm multimodal and multi-objective
  • 相关文献

参考文献12

二级参考文献161

  • 1张涛,余利,姚剑峰,冯朕,郭玥彤.基于改进多目标差分灰狼算法的配电网无功优化[J].信息与控制,2020,49(1):78-86. 被引量:19
  • 2Lasseter R H, Akhil A, Marnay C, et al. Integration ofdislributed energy resources: the CERTS microgrid concept[R]. Berkeley, CA, USA: Consortium for Electric Reliability Technology Solutions,2002.
  • 3Kojima Y, Koshio M, Nakamura S, et al. A demonstration project in Hachinohe: microgrid with private distribution line[C]//Proceedings of 2007 IEEE International Conference on System of Systems Engineering. SanAntonio, TX, USA: IEEE SMC Society, 2007: 1-6.
  • 4Katiraei F, Iravani R, Hatziargyriou N, et al. Microgrids management[J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65.
  • 5Tsikalakis A G, Hatziargyriou N D. Centralized control for optimizing microgrids operation[J]. IEEE Trans. on Energy Conversion, 2008, 23(1): 241-248.
  • 6Dimeas A L, Hatziargyriou N D. Agent based control for microgrids[C]//Proceedings of IEEE Power Engineering Society General Meeting. Tampa, FL, USA: IEEE Power Engineering Society, 2007: 1-5.
  • 7Mears L, Gotschall H, Kamath H. EPRI-DOE Handbook of energy storage for transmission and distribution applications[R]. Palo Alto, CA, USA: EPRI, 2003.
  • 8Sanislo M. Energy storage and distributed generation technologies: real options valuation/benefit case studies[R]. PaloAlto, CA, USA: EPRI, 2006.
  • 9Sehoenung S M, Hassenzahl W. Long vs. short-term energy storage: sensitivity analysis[R]. CA, USA: Sandia National Laboratories, 2007.
  • 10lba K, Ideta R, Suzuki K. Analysis and operational records of NAS battery[C]//Proceedings of the 41st International Universities Power Engineering Conference. Newcastle, UK: IEEE, IEEandCIGRE, 2006: 491-495.

共引文献452

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部