期刊文献+

基于分区建模的复杂山地风电功率预测 被引量:1

Wind Power Prediction in Complex Mountainous Region Based on Partition Modeling
下载PDF
导出
摘要 受地表粗糙度、复杂地形等因素的影响,对山地风电场整体风电功率进行预测存在较大困难。为解决此问题,提出利用K-means聚类算法对风电机组进行分区建模,根据风电机组的预测精度以及风电机组与子区域的相关系数,选择每个子区域内的参考风电机组。采用BP神经网络分位数回归模型对参考风电机组的风电功率进行预测。基于参考风电机组的预测结果,利用核密度估计(KDE)和稀疏贝叶斯学习(SBL)形成的组合预测模型对子区域的风电功率进行预测,将子区域的预测结果相加即可得到整体区域功率预测结果。实验结果表明采用分区建模的方法可有效提升复杂山地风电场功率预测的准确性。 In order to solve the problem that the mountain wind farm is affected by factors such as surface roughness and complex terrain,the overall wind power prediction is difficult.The K-means clustering algorithm is used to model the wind turbine partition.According to the prediction accuracy of the wind turbine and the correlation coefficient between the wind turbine and the sub-region,the reference wind turbine in each sub-region is selected.The BP neural network quantile regression model is used to predict the wind power of the reference wind turbine.Based on the prediction results of reference wind turbines,a combined prediction model formed by kernel density estimation(KDE)and sparse Bayesian learning(SBL)is used to predict the wind power of sub regions.The overall regional power prediction results can be obtained by adding the prediction results of sub regions.The experimental results indicate that the method of partition modeling can effectively improve the accuracy of power prediction for complex mountain wind farms.
作者 黄定国 陈渝 杨勇 HUANG Dingguo;CHEN Yu;YANG Yong(Chongqing Qingdian New Energy Development Co.,Ltd.,Chongqing 401120,China)
出处 《现代信息科技》 2023年第23期162-165,170,共5页 Modern Information Technology
关键词 K-MEANS聚类算法 风电功率预测 复杂地形 分区建模 BP神经网络 K-means clustering algorithm wind power prediction complex terrain partition modeling BP neural network
  • 相关文献

参考文献2

二级参考文献21

  • 1GIEBEL G, LANDBERG L, KARINIOTAKIS G. State-of-the- art on methods and software tools for short-term, prediction of wind energy production [ C ]// European Wind Energy Conference & Exhibition, June 16-19, 2003, Madrid, Spain.
  • 2KARINIOTAKIS G, MAYER D, MOUSSAFIR J. ANEMOS.- development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms [C]// European Wind Energy Conference & Exhibition, June 16-19, 2003, Madrid, Spain.
  • 3VON BREMEN L, SALECK N, HEINEMANN D. Enhanced regional forecasting considering single wind farm distribution for upscaling[EB/OL]. [2012 05 06]. http://stacks, iop. org/ 1742 6596/75/012040.
  • 4PINSON P, SIEBERT N, KARINIOTAKIS G. Forecasting of regional wind generation by a dynamic fuzzy-neural networks based upscaling approach [C]// European Wind Energy Conference ~ Exhibition, June 16-19, 2003, Madrid, Spain.
  • 5FOCKEN U, LANGE M, WALDL H P. Previento a wind power prediction system with an innovative upscaling algorithm [C]// Proceedings of European Wind Energy Conference Exhibition, July 2 6, 2001, Copenhagen, Denmark.
  • 6Q/GDW588-2011风电功率预测功能规范[S].2011.
  • 7FOCKEN U, LANGE M, MONNICH K, et al. Short-term prediction of the aggregated power output of wind farms a statistical analysis of the reduction of the prediction error by spatial smoothing effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 231-246.
  • 8MONTEIRO C, BESSA R, MIRANDA V, et al. Wind power forecasting: state of-the art 2009 [R/OL]. [2012 05-08].http://www, dis. anl. gov/projects/windpowerforecasting. html.
  • 9井天军,阮睿,杨明皓.基于等效平均风速的风力发电功率预测[J].电力系统自动化,2009,33(24):83-87. 被引量:16
  • 10冯双磊,王伟胜,刘纯,戴慧珠.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6. 被引量:187

共引文献32

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部