期刊文献+

基于序列增强的事件主体抽取方法

Event Subject Extraction Method Based on Sequence Enhancement
下载PDF
导出
摘要 为了解决在事件抽取中使用固定文本长度造成短句子填充过多,从而引发语义偏移的问题,提出一种基于序列增强的事件主体抽取方法。具体而言,首先,将固定长度文本通过预训练模型映射到1个稠密向量中;然后,将文本对应的稠密向量与自定义Mask层和SpatialDropout层按位相乘,得到编码输出;最后,将该输出连接BiGRU层以及Mask层,得到解码输出,并将其映射在MLP层中,得到最后的结果。该模型既能够避免预训练模型对文本表征过拟合的问题,也能够限制填充文本在语义上的过度表达。使用CCKS 2022所供金融领域事件主体作为数据集进行不同模型读取对比实验,所得实验数据表明,对填充文本加以负影响的增强序列比传统序列在事件主体识别的正确性、F_(1)值上皆显著提升。 In view of a solution of semantic deviation brought about by overfilling short sentences with fixed text length in event extraction,a sequence enhancement based event subject extraction method has thus been proposed.Specifically,an initial mapping of the fixed-length text is given to a dense vector through a pre-trained model.Subsequently,the dense vector corresponding to the text is bitwise multiplied by the custom Mask layer and SpatialDropout layer,thus obtaining the encoded output.Finally,the output is connected with BiGRU and Mask layers to get the decoded output,which is then mapped to an MLP layer to obtain the final result.This model can not only avoid the problem of overfitting the text representation in the pre-trained model,but also limit the semantic overexpression of thefilled text.By using thefinancialfield event subjects provided by CCKS 2022 as a dataset for different model reading comparative experiments,the experimental data obtained shows that the enhanced sequence with negative impact on filled text significantly improves the accuracy and F_(1) value of event subject recognition compared to traditional sequences.
作者 沈加锐 朱艳辉 金书川 张志轩 满芳滕 SHEN Jiarui;ZHU Yanhui;JIN Shuchuan;ZHANG Zhixuan;MAN Fangteng(College of Railway Transportation,Hunan University of Technology,Zhuzhou Hunan 412007,China;College of Computer Science,Hunan University of Technology,Zhuzhou Hunan 412007,China)
出处 《湖南工业大学学报》 2024年第1期70-77,共8页 Journal of Hunan University of Technology
基金 国家自然科学基金资助项目(62106074) 湖南省教育厅基金资助重点项目(22A0408,21A0350) 湖南省自然科学基金资助项目(2022JJ50051)。
关键词 序列增强 事件主体 抽取 掩码模型 sequence enhancement event subject extraction masked model
  • 相关文献

参考文献8

二级参考文献36

  • 1李妮,关焕梅,杨飘,董文永.基于BERT-IDCNN-CRF的中文命名实体识别方法[J].山东大学学报(理学版),2020,55(1):102-109. 被引量:55
  • 2Ruyue Xin,Jiang Zhang,Yitong Shao.Complex Network Classification with Convolutional Neural Network[J].Tsinghua Science and Technology,2020,25(4):447-457. 被引量:19
  • 3姜吉发.一种事件信息抽取模式获取方法[J].计算机工程,2005,31(15):96-98. 被引量:27
  • 4钱世凤.省略界定综述[J].语文学刊(高等教育版),2007(1):119-122. 被引量:3
  • 5]iang Huixing,Wang Xiaojie, Tian Jilei. Second-order HMM for event extraction from short message [ J ]. Lecture Notes in Computer Science,2010,6 177 : 149-156.
  • 6Zhou Deyu, Yulan Heb. Biomedical events extraction using the hidden vector state model [ J ]. Artificial Intelligence in Medicine,2011,53(3) :205-213.
  • 7Li Qing,Yuanzhu Peter Chen. Personalized text snippet extraction using statistical language models [ J ]. Pattern Recognition, 2010,43( 1 ) :378-386.
  • 8Scheffer T, Decomain C, Wrobel S. Active hidden Markov models for information extraction [ C ]//Proceedings of the Interna- tional Symposium on Intelligent Data Analysis. Berlin:Springer,2001:301-109.
  • 9Bolanle Ojokoh ,Zhang Ming,Tang Jian. A trigram hidden Markov model for metadata extraction from heterogeneous references[J]. Information Sciences,2011,181 (9) : 1 538-1 551.
  • 10Liu Jiangyang. Resolution to combinational ambiguity of Chinese word segmentation [ C ]//Proceedings of the International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government, 2009. Hongkong: IEEE, 2009 : 141-145.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部