期刊文献+

基于深层多尺度聚合3D U-Net的肾脏与肾肿瘤分割方法 被引量:1

Segmentation method of kidney and kidney tumors based on deep multi-scale aggregation 3D U-Net
下载PDF
导出
摘要 针对电子计算机断层扫描(CT)图像中肾肿瘤形态复杂多变、肿瘤目标小、肿瘤边缘复杂等问题,提出了深层多尺度聚合3D U-Net网络分割模型。该模型在U-Net++基础上新增了3个下采样操作,利用密集嵌套的3D U-Net和解码器层的跳跃连接以及各层级3D U-Net子网络之间的跳跃连接,促进各个层级和各个尺度的特征信息融合,增强了对细节特征的提取能力,从而提升了对小尺度肾肿瘤和肿瘤边缘的分割精度。实验结果表明:该模型能够准确分割边缘复杂以及尺度较小的肾肿瘤,在KiTS19公开数据集上进行评估,本文模型对肾脏分割的Dise系数为0.968 2,对肿瘤分割的Dise系数为0.790 8,分割性能良好。 Aiming at the problems of complex and changeable kidney tumors morphology,small tumor targets,and complex tumor edges in CT images,a DMSA 3D U-Net network segmentation model of deep multi-scale aggregation(DMSA)is proposed.Based on U-Net++,the model introduces three new down-sampling operations.Using the densely nested 3D U-Net and decoder end jump connections,as well as the jump connections between 3D U-Net sub-networks at each level,the model promotes the fusion of feature information at each level and at each scale,enhances the ability to extract detailed features.The above steps improve the segmentation accuracy of small-scale kidney tumors and tumor edges.The experimental results show that the proposed model can accurately segment kidney tumors with small scale and complex margins.When evaluated on the KiTS19 public dataset,the proposed model achieved an accuracy of 0.9682 for kidney segmentation,0.7908 for tumor segmentation,indicating its segmentation performance is good.
作者 张芳 郝思敏 耿磊 ZHANG Fang;HAO Simin;GENG Lei(School of Life Sciences,Tiangong University,Tianjin 300387,China;School of Electronics and Information Engi-neering,Tiangong University,Tianjin 300387,China;Tianjin Key Laboratory of Optoelectronic Detection Technology and System,Tiangong University,Tianjin 300387,China)
出处 《天津工业大学学报》 CAS 北大核心 2023年第6期84-90,共7页 Journal of Tiangong University
基金 京津冀基础研究合作专项(H2021202008) 天津市自然科学基金青年项目(18JCQNJC70600)。
关键词 肾肿瘤 自动分割 CT图像 3D U-Net 深层多尺度聚合 kidney tumors automatic segmentation CT images 3D U-Net deep multi-scale aggregation
  • 相关文献

参考文献4

二级参考文献36

  • 1American Cancer Society. Cancer facts and figures 2013[M]. Atlanta (GA) : American Cancer Society, 2013 : 4-6.
  • 2中国泌尿外科疾病诊断治疗指南编辑委员会.2007版中国泌尿外科疾病诊断治疗指南[M].北京:人民卫生出版社,2007:90-104.
  • 3Hall R R. Superficial bladder cancer[J]. British Medical Journal, 1994,308 (6 933 ) : 910.
  • 4Grasso M. Bladder cancer:a major public health issue[J]. European Urology,2008,7(7) :510-515.
  • 5Barentsz J O,Witjes J A,Ruijs J H J. What is new in bladder cancer imaging [J]. Urologic Clinics of North America, 1997,24 ( 3 ) : 583-602.
  • 6Jaume S,Ferrant M,Macq B,et aL Tumor detection in the bladder wall with a measurement of abnormal thickness in CT scans[J]. IEEE Transactions on Biomedical Engineering, 2003,50 (3) : 383-390.
  • 7ZHU Hong-bin,DUAN Chai-jie,JIANG Rui-rui,et al. Computer- aided detection of bladder tumors based on the thickness mapping of bladder wall in MR images[J/OL]. Proceedings of SPIE, 2010,7 623 : 1-5. [2014-08-20]. http ://dx.doi.ong/10.1117/12844439.
  • 8ZHAO Y,ZHU H,DUAN C ,et al. A precise calculation of bladder wall thickness for detection of bladder abnormalities via MR cystog- raphy[C]//IEEE Nuclear Science Symposium and Medical Imaging Conference Record. Valeneia:IEEE ,2011:3 153-3 157.
  • 9Kannan S R,Ramathilagam S,Devi P,et al. Robust kernel FCM in segmentation of breast medical images[J]. Expert Systems with Ap- plications ,2011,38(4) :4 382-4 389.
  • 10QIN X,LI X,LIU Y,et ol. Adaptive shape prior constrained level sets for bladder MR image segmentation[J]. IEEE Journal of Biom- edical Health Informaties ,2014,18(5) : 1 707-1 716.

共引文献29

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部