期刊文献+

基于渐消因子的ECEF-GLS估计算法

ECEF-GLS estimation algorithm based on fading factor
下载PDF
导出
摘要 传统的误差配准算法假设系统偏差恒定或缓慢变化,当系统误差发生突变或快速变化时,这一假设不再成立。针对这一问题,研究了时变条件下的误差配准算法,引入渐消因子,对常规的基于地心地固坐标系的广义最小二乘算法(generalized least squares algorithm based on the earth-centered earth-fixed coordinate system,ECEF-GLS)进行了修正,弱化历史量测对配准的影响,并对渐消因子的选取问题进行了研究,给出了合理的设计方法。算法验证表明,基于渐消因子的ECEF-GLS估计算法能够对时变的系统偏差进行有效估计,精度满足配准要求。 The traditional error registration algorithm assumes that the system deviation is constant or changes slowly,but this assumption is no longer valid when the system error changes suddenly or rapidly.To solve this problem,the error registration algorithm in time-varying condition is studied,the fading factor is introduced,the conventional generalized least squares algorithm based on the earth-centered earth-fixed coordinate system(ECEF-GLS)is revised,the historical measurement influence on registration is weaken,and the selection problem of fading factor are studied to give reasonable design method.The algorithm verification shows that the ECEF-GLS estimation algorithm based on fading factor can estimate the time-varying system deviation effectively,and the accuracy meets the requirements of registration.
作者 董云龙 张焱 DONG Yunlong;ZHANG Yan(Information Fusion Research Institute,Naval Aviation University,Yantai 264001,China;Unit 32654 of the PLA,Jinan 250000,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期137-142,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(62101583,61871392)资助课题。
关键词 基于地心地固坐标系的广义最小二乘算法 渐消因子 参数估计 时变 系统误差 generalized least squares algorithm based on the earth-centered earth-fixed coordinate system(ECEF-GLS) fading factor parameter estimation time-varying system error
  • 相关文献

参考文献9

二级参考文献54

  • 1WANGGuohong XIUJianjuan HEYou.An Unbiased Unscented Transform Based Kalman Filter for 3D Radar[J].Chinese Journal of Electronics,2004,13(4):697-700. 被引量:1
  • 2胡洪涛,敬忠良,胡士强.一种基于Unscented卡尔曼滤波的多平台多传感器配准算法[J].上海交通大学学报,2005,39(9):1518-1521. 被引量:15
  • 3Dana M P. Registration: a prerequisite for multiple sensor tracking[A]. Shalom Y B Ed. Multitarget-Multisensor Tracking:Advanced Applications[C]. Artech House,Norwood,MA,1990.173~175.
  • 4Burke J J. The SAGE real time quality control function and its interface with BUIC Ⅱ/BUIC Ⅲ[R]. MITRE Corporation Technical Report,No.308,1996.
  • 5Leung H,Blanchett M.A least square fusion of multiple radar data[A]. Proceedings of RADAR 1994[C].Paris,1994.364~369.
  • 6Zhou Yifeng, Henry L. An exact maximum likelihood registration algorithm for data fusion[J]. IEEE Trans Signal Processing,1997,45(6):1560~1572.
  • 7Burke J J. Stereographic projection of radar data in a netted radar system[R]. MITRE Technical Report 2580, 1973.
  • 8Elias-Fuste A R,Broquetas B A,Antequera J P,et al.CFAR data fusion center with inhomogeneous receivers[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28:276-284.
  • 9Blackman S S.Multiple-target tracking with radar applications[M].Boston:Aretch House,1986.
  • 10Farina A,Studer F A.Radar data processing,Vol.II-Advanced topics and applications[M].London:Research Studies Press,1986.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部