期刊文献+

基于深度学习的图像降噪技术在智慧水利中的应用 被引量:2

Deep Learning-based Image Noise Reduction Technology in Smart Water Conservancy Application
下载PDF
导出
摘要 随着物联网技术的发展,智慧水利系统依赖于从各类监控设备、无人机、摄像头和卫星采集的大量图像数据,这些数据的质量直接影响数字孪生平台中模型的鲁棒性和识别率。文章探讨了图像降噪技术在智慧水利系统中的应用,特别是在数字孪生平台中的重要性,详细分析了图像降噪技术的发展历程,从传统方法到基于深度学习的现代方法,并着重讨论了单帧和多帧降噪技术在处理低光照和复杂天气条件下江河湖海图像的效果。通过实验研究,展示了这些技术在提高图像质量、增强模型性能方面的潜力,强调了在智慧水利系统中综合应用这些技术的重要性。 With the development of Internet of Things(IoT)technology,the intelligent water system relies on a large amount of image data collected from various types of surveillance devices,drones,cameras,and satellites,the quality of which directly affects the robustness and recognition rate of the models in the digital twin platform.The article discusses the application of image denoising in smart water conservancy systems,especially the importance of digital twin platforms,analyzes in detail the development of image denoising from traditional methods to modern methods based on deep learning,and focuses on the effectiveness of single-frame and multi-frame denoising for processing images of river,lake,and sea under low-light and complex weather conditions.The experimental study demonstrates the potential of these techniques to improve image quality and enhance model performance,and emphasizes the importance of integrating these techniques in intelligent water systems.
作者 涂强 TU Qiang(Guangdong Research Institute of Water Resources and Hydropower,Guangzhou 510635,China)
出处 《广东水利水电》 2023年第12期116-124,共9页 Guangdong Water Resources and Hydropower
基金 广东省重点领域研发计划项目(编号:2020B0101130018)。
关键词 智慧水利 图像降噪 深度学习 多帧降噪 intelligent water conservancy image denoising deep learning multiframe denoise
  • 相关文献

参考文献1

二级参考文献1

共引文献13

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部