期刊文献+

基于q-正交模糊集的冲突分析模型

A q-rung orthopair fuzzy set based conflict analysis model
原文传递
导出
摘要 基于q-正交模糊集构建冲突分析模型,用q-正交模糊数表示对象关于议题的态度,并使用综合联盟距离衡量对象关于议题的联盟度,进一步通过分析对象和议题的3种联盟层次得到冲突的内因。其次,基于模糊粗糙自信息给出可行策略集的分类能力评价,由此构建寻找最佳可行策略的后向算法。模糊粗糙自信息所需的分类信息由对象的3种联盟层次充当,进一步便可定义联盟层次的上下近似,从而得到可行策略集的分类能力评价。最后,通过中东冲突的例子演示了模型及算法的可行性,并分析了阈值对输出的最佳可行策略集的影响。 We propose a q-rung orthopair fuzzy set based conflict analysis model,employ q-rung orthopair fuzzy numbers to denote the attitudes of agents toward issues.In addition,comprehensive alliance distance is used to measure the alliance degree of agents on the issues,and the conflicting reasons are obtained based on an analysis of the three alliance levels of agents and issues.Furthermore,the classification ability evaluation of a feasible strategy set is given based on fuzzy rough self-information,and a backward algorithm for finding the best feasible strategy is constructed.We consider the three alliance levels of the agents as the classification information required by fuzzy rough self-information.Further,the upper and lower approximations of the alliance levels can be defined,so as to obtain the classification ability evaluation of the feasible strategy set.Finally,the feasibility of the model and algorithm proposed in this paper is demonstrated through an example of Middle East conflict,and analyze the influence of changing value of thresholds on the optimal feasible strategy.
作者 林天泰 杨斌 LIN Tiantai;YANG Bin(School of Science,Northwest A&F University,Yangling 712100,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2023年第12期77-90,共14页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(12101500) 中央高校基本科研业务经费资助项目(2452018054,2452022370)。
关键词 粗糙集 自信息 冲突分析 q-正交模糊集 rough set self-information conflict analysis q-rung orthopair fuzzy set
  • 相关文献

参考文献1

二级参考文献33

  • 1K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986) 896.
  • 2K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets Syst. 33 (1989) 37- 46.
  • 3K. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets Syst. 61 (1994) 137-142.
  • 4K. Atanassov, Norms and metrics over intuitionistic fuzzy logics, Bull. Sous. Ens. Flous. Appl. 59 (1994) 49-58.
  • 5K. Atanassov, Intuitionistic Fuzzy Sets: Theory and Applications (Physica-Verlag, Heidelberg, 1999).
  • 6K. Atanassov, On Intuitionistic Fuzzy Sets Theory (Springer, Berlin, 2012).
  • 7R. Biswas, Intuitionistic fuzzy relations, Bull. Sous. Ens. Flous. Appl. 70 (1997) 22-29.
  • 8R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, Notes Intuition. Fuzzy Sets 3 (1997) 3-11.
  • 9P. Burillo and H. Bustince, Entropy on intuitionistic fuzzy sets and interval-valued fuzzy sets, Fuzzy Sets Syst. 78 (1996) 305-316.
  • 10S. M. Chen, Similarity measure between vague sets and between elements, IEEE Trans. Syst. Man Cybern. 27 (1997) 153-158.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部