摘要
单控制器的灵活性较低,因此通常采用多控制器实现网络均衡,但是多控制器负载均衡普遍存在均衡负载效果不佳的问题,为此提出基于SDN的多控制器负载均衡算法。采集SDN网络的静态负载信息和动态反馈负载信息,判断SDN网络中的过载控制器,并基于优先权的交换机选择策略选取待迁移的交换机;基于博弈论进行SDN多控制器负载均衡博弈,结合改进蚁群算法将上述待迁移的交换机迁移到最优目标控制器中,实现负载均衡;通过改进蚁群算法求解SDN多控制器负载均衡博弈问题,选取最优迁移控制器,将交换机从过载控制器迁移至最优迁移控制器,实现多控制器负载均衡。实验结果表明,所提方法的多控制器负载均衡实现时间最短、效果最好。
In order to address the problem that the flexibility of a single controller is low and the load balancing performance in multi-controller is not performing well,this article put forward a multi-controller load balancing algorithm based on SDN.Firstly,we collected the static load information and dynamic feedback load information of SDN network,thus determining the overload controller in SDN network.Meanwhile,we chose the exchange board to be migrated according to the priority switch selection strategy.Then,we performed SDN multi-controller load balancing game by the game theory.Moreover,we migrated the exchange boards to be migrated to the optimal target controller by the improved ant colony algorithm and thus achieving load balancing.Furthermore,we used the improved ant colony algorithm to solve the problem of SDN multi-controller load balancing game.After that,we selected the optimal migration controller and migrated the switch from the overload controller to the optimal migration controller.Finally,we achieved the multi-controller load balancing.Experimental results show that the proposed method has the shortest implementation time and the best performance for multi-controller load balancing.
作者
潘志安
王小英
王茂发
PAN Zhi-an;WANG Xiao-ying;WANG Mao-fa(School of Information Engineering,Institute of Disaster Prevention,Sanhe Hebei 065201,China;School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处
《计算机仿真》
北大核心
2023年第10期321-325,共5页
Computer Simulation
基金
中央高校基本科研业务费专项资金创新团队资助计划项目(ZY20180125)
廊坊市科学技术研究与发展计划自筹经费项目(2021011028)
河北省高等教育教学改革研究与实践项目(2022GJJG481)。
关键词
多控制器
软件定义网络
负载均衡
博弈论
改进蚁群算法
Multi controller
Software-defined network
Load balancing
Game theory
Improved ant colony algorithm